SC705: Advanced Statistics Instructor: Natasha Sarkisian Class notes: Two-level HLM Models

We continue working with High School and Beyond data (included with HLM software – see HLM folder \rightarrow Examples \rightarrow Chapter 2, data files: HSB1.sav and HSB2.sav).

After estimating a null model and assuring that we observe a significant amount of group-level variance, we proceed to build a multilevel explanatory model. A typical approach is to build such a model from bottom up.

Model 1. Conditional model with random intercept (one way ANCOVA with random intercept)

```
LEVEL 1 MODEL
 MATHACH_{ii} = \beta_{0i} + \beta_{1i}(SES_{ii}) + r_{ii}
LEVEL 2 MODEL
  \beta_{0i} = \gamma_{00} + u_{0i}
  \beta_{1i} = \gamma_{10}
MIXED MODEL
 MATHACH<sub>ii</sub> = \gamma_{00} + \gamma_{10} *SES<sub>ii</sub>+ u_{0i} + r_{ii}
Sigma_squared = 37.03440
Tau
INTRCPT1,B0 4.76815
Tau (as correlations)
INTRCPT1, B0 1.000
 Random level-1 coefficient Reliability estimate
_____
 INTRCPT1, B0
                            0.843
_____
The value of the likelihood function at iteration 6 = -2.332167E+004
The outcome variable is MATHACH
Final estimation of fixed effects:
 _____
  Standard Approx.
Fixed Effect Coefficient Error T-ratio d.f. P-value
_____
For INTRCPT1, B0
                   12.657481 0.187984 67.333 159 0.000
 INTRCPT2, G00
For SES slope, B1
  INTRCPT2, G10 2.390199 0.105719 22.609 7183 0.000
_____
The outcome variable is MATHACH
Final estimation of fixed effects
(with robust standard errors)
```

Fixed Effe	ect	Coefficient	Standard Error	T-ratio	Approx. d.f.	P-value
For INT INTRCPT2, For SES INTRCPT2,	TRCPT1, B G00 slope, B G10	0 12.657481 1 2.390199	0.187330	67.568	159 7183	0.000
Final estimat	tion of v	ariance compone	ents:			
Random Effect	2	Standard Deviation	Variance Component	df	Chi-square	P-value
INTRCPT1, level-1,	UO R	2.18361 6.08559	4.76815 37.03440	159	1037.09077	0.000
Statistics fo	or curren	t covariance cc	omponents mod	el		
Deviance		= 466	43 331427			

Number of estimated parameters = 2

Note that we now estimate two fixed effects – the intercept and the effect of student's SES. The intercept γ_{00} is no longer the average math achievement – it is now math achievement for someone with all predictors equal to zero. In this case, it's math achievement for someone with SES=0, but because the SES scale was designed to have a mean of 0, the intercept (12.66) is essentially the math achievement for someone with average SES. The effect of SES, γ_{10} , can be interpreted as follows: one unit increase in SES is associated with 2.39 unit increase in one's math achievement. So math achievement for someone with SES being 1 unit above the mean would be:

12.66+2.39=15.05

Note that each β_{0j} is now the mean outcome for each group (i.e. school) adjusted for the differences among these groups in SES.

As we now accounted for some portion of the variance by controlling for SES, we can calculate the adjusted intra-class correlation: $\rho=4.76815/(4.76815+37.03440)=.11406362$

The decrease in ρ from .18035673 to .11406362 reflects a reduction in the relative share of between-school variance when we control for student SES. But there is still significant variation across schools.

We could also calculate the proportion of variance explained at each level by comparing the current variance estimates to those in the null model. (This is the easiest method recommended by Bryk and Raudenbush; another method is suggested by Snijders and Bosker; you can see their book for more details):

(8.61431 - 4.76815)/8.61431 = .44648498

(39.14831 - 37.03440)/ 39.14831 = .05399748

So controlling for individuals' SES explained 45% of between-school variance, and 5% of within-school variance in math achievement. We could also calculate the total percentage of variance explained:

(39.14831+8.61431-4.76815-37.03440)/(39.14831+8.61431)= .12478524 So students' SES explained 12% of the total variance in math achievement.

Let's take this one step further. So far we assumed that an individual student's SES would have the same impact on his or her math achievement regardless of the school where that student is studying. Let's relax that assumption.

Model 2. Model with random intercept and random slopes (one way ANCOVA with random intercept and slopes)

LEVEL 1 MODEL

 $MATHACH_{ij} = \beta_{0j} + \beta_{1j}(SES_{ij}) + r_{ij}$

LEVEL 2 MODEL

 $\beta_{0j} = \gamma_{00} + u_{0j}$ $\beta_{1j} = \gamma_{10} + u_{1j}$

Here, level-1 slopes are allowed to vary across level-2 units. But we do not try to predict that variation – only describe it.

Now we have:

 γ_{00} is the average intercept across the level-2 units (grand mean of math achievement controlling for SES – i.e. the mean for someone with SES=0)

 γ_{10} is the average SES slope across the level-2 units (i.e. average effect of SES across schools) u_{0j} is the unique addition to the intercept associated with level-2 unit j (indicates how the intercept for school j differs from the grand mean)

 u_{1j} is the unique addition to the slope associated with level-2 unit j (indicates how the effect of SES in school j differs from the average effect of SES for all schools)

Note that:

 $\begin{pmatrix} u_{0j} \\ u_{1j} \end{pmatrix} \sim N \left(0, \begin{pmatrix} \tau_{00} & \tau_{01} \\ \tau_{10} & \tau_{11} \end{pmatrix} \right)$

Our tau matrix now contains the variance in the level-1 intercepts (τ_{00}), the variance in level-1 slopes (τ_{11}), as well as the covariance between level-1 intercepts and slopes ($\tau_{01} = \tau_{10}$). Note that covariance value indicates how much intercepts and slopes covary: in our example (below), there is a negative correlation between intercepts and slopes. That is, the higher the intercept, the smaller the slope (i.e. if the school level of math achievement is high, the effect of SES in that school is smaller).

Sigma_squared =	36.82835	
Tau		
INTRCPT1,B0	4.82978	-0.15399
SES,B1	-0.15399	0.41828

Tau (as correlations) INTRCPT1, B0 1.000 -0.108 SES, B1 -0.108 1.000 _____ Random level-1 coefficient Reliability estimate -----INTRCPT1, B0 0.797 SES, B1 0.179 _____ The value of the likelihood function at iteration 21 = -2.331928E+004The outcome variable is MATHACH Final estimation of fixed effects: _____ Standard Approx. Fixed Effect Coefficient Error T-ratio d.f. P-value _____ For INTRCPT1, B0 INTRCPT2, G00 12.664935 0.189874 66.702 159 0.000 For SES slope, B1 INTROPT2. G10 2.393878 0.118278 20.240 159 0.000 _____ The outcome variable is MATHACH Final estimation of fixed effects (with robust standard errors) _____ _____ Standard Approx. Fixed Effect Coefficient Error T-ratio d.f. P-value _____ For INTRCPT1, B0 INTRCPT2, G00 12.664935 0.189251 66.921 159 0.000 INTROPTZ, GOU For SES slope, B1 159 0.000 INTRCPT2, G10 2.393878 0.117697 20.339 _____ Final estimation of variance components: _____ Standard Variance df Chi-square P-value Deviation Component Random Effect _____ INTRCPT1, U0 2.19768 4.82978 159 905.26472 0.000 SES slope, U1 0.64675 0.41828 159 216.21178 0.002 level-1, R 6.06864 36.82835 _____ _____ Statistics for current covariance components model Deviance = 46638.560929 Number of estimated parameters = 4

Here, like in the previous model, the math achievement for someone with average SES (SES=0) is 12.66; each unit increase in SES is associated with 2.39 units increase in math achievement. But, examining variance components, we notice that there is a significant variation in slopes (p-value =.002) – this means that SES effects vary across schools, so 2.39 is the effect for an average school. Here, if we want to divide the unexplained variance into within-school and between-school, we need to take into account the covariance: level 1 component is simply 36.82835, but level 2 component is (4.82978+0.41828+2*-0.15399)= 4.94008.

Note that in addition to the average reliability of school means, we now also have an estimate of reliability for the effect of SES, and it is much lower: .179. It is normal that the reliability of slopes is much lower than that of intercepts. The precision of estimation of the intercept (which in this case is a school mean) depends only on the sample size within each school. The precision of estimation of the slope depends both on the sample size and on the variability of SES within that school. Schools that are homogeneous with respect to SES will exhibit slope estimation with poor precision. But the average reliability of the slopes is relatively low because the true slope variance across schools is much smaller than the variance of the true means.

Note that low reliabilities do not invalidate the HLM analysis, but very low reliabilities (typically < .10) often indicate that a random coefficient might be considered fixed (i.e., the same across groups) in subsequent analyses.

Model 3. Means-as-outcomes model (a.k.a. Intercepts as outcomes)

LEVEL 1 MODEL

 $MATHACH_{ii} = \beta_{0i} + r_{ii}$

LEVEL 2 MODEL

 $\beta_{0i} = \gamma_{00} + \gamma_{01}(\text{SECTOR}_i) + u_{0i}$

This model allows us to predict variation in the levels of math achievement using level-2 variables. If we would attempt to do this using regular OLS, we would be artificially inflating the sample size and pretend we have 7185 data points to evaluate the effect of type of school (Catholic vs public), when in fact it's only 160 schools. Aggregating the data to school level would be more acceptable, but we would not have any assessment of within-school variation. Note, however, that the sample size for level 2 becomes important as soon as you try to include predictors at this level!

```
Sigma squared =
           39.15135
Tau
INTRCPT1, B0 6.67771
Tau (as correlations)
INTRCPT1, B0 1.000
_____
 Random level-1 coefficient Reliability estimate
-----
 INTRCPT1, B0
                       0.877
_____
The value of the likelihood function at iteration 4 = -2.353915E+004
The outcome variable is MATHACH
Final estimation of fixed effects:
  _____
                        Standard Approx.
               Coefficient Error T-ratio d.f. P-value
  Fixed Effect
_____
  r INTRCPT1, B0
INTRCPT2, G00 11.393043 0.292887 38.899
SECTOR, G01 2.804889 0.439142 6.387
For
                                       158 0.000
                 2.804889 0.439142 6.387 158 0.000
```

The outcome variable is MATHACH Final estimation of fixed effects (with robust standard errors) _____ Standard Approx. Fixed Effect Coefficient Error T-ratio d.f. P-value _____ ForINTRCPT1, B0INTRCPT2, G0011.3930430.29225838.983SECTOR, G012.8048890.4358236.436 158 0.000 158 0.000 _____ Final estimation of variance components: _____ Standard Variance df Chi-square P-value Deviation Component Random Effect _____ INTRCPT1, U0 2.58413 6.67771 158 1296.76559 0.000 level-1, R 6.25710 39.15135 _____ Statistics for current covariance components model _____ = 47078.295826 Deviance Number of estimated parameters = 2

Here, we see a positive effect of Catholic schools on math achievement – the average achievement of Catholic schools is 2.8 units higher than for public schools. The intercept now is an average value for a public school student. There is, nevertheless, significant school-level variance remaining. As we did with earlier models, we can calculate the percentage of variance in math achievement explained by school type. Note that here we only explain level 2 variance – level 1 variance remained the same. For level 2 variance:

(8.61431 - 6.67771)/8.61431 = .22481197

So 22% of school-level variance in math achievement was explained by type of school.

Model 4. Means as outcomes model with level 1 covariate

As a next step, we can add level-1 covariates to this means-as-outcomes model. These level-1 variables can be added as fixed effects (i.e., assuming that the effects of these covariates are the same for all schools –that's what we did in model 1) or as random effects (i.e., assuming that the effects of level 1 variables vary across schools – that's what we did in model 2). We will right away opt for a more complex option, assuming that the effects of level 1 variable – SES – vary across schools.

LEVEL 1 MODEL MATHACH_{ij} = $\beta_{0j} + \beta_{1j}(SES_{ij}) + r_{ij}$ LEVEL 2 MODEL

 $\beta_{0j} = \gamma_{00} + \gamma_{01}(\text{SECTOR}_j) + u_{0j}$ $\beta_{1j} = \gamma_{10} + u_{1j}$ Sigma squared = 36.79508

Tau INTRCPT1,B0 3.96459 0.71641 SES,B1 0.71641 0.44990 Tau (as correlations) INTRCPT1, B0 1.000 0.536 SES, B1 0.536 1.000 _____ Random level-1 coefficient Reliability estimate _____ INTRCPT1, B0 0.765 SES, B1 0.189 _____ The value of the likelihood function at iteration 21 = -2.330093E+004The outcome variable is MATHACH Final estimation of fixed effects: StandardApprox.Fixed EffectCoefficientErrorT-ratiod.f.P-value _____ For INTRCPT1, B0 11.476646 0.231587 49.5571587.349158 49.557 INTRCPT2, G00 2.533835 0.344798 SECTOR, G01 For SES slope, B1 INTRCPT2, G10 2.385451 0.118329 20.160 159 0.000 _____ The outcome variable is MATHACH Final estimation of fixed effects (with robust standard errors) Standard Approx. Coefficient Error T-ratio d.f. Fixed Effect _____ For INTRCPT1, B0 INTRCPT2, G00 11.476646 0.225026 51.001 2.533835 0.352411 SECTOR, G01 7.190 For SES slope, B1 2.385451 0.119008 20.044 INTRCPT2, G10 _____ -----Final estimation of variance components: _____ Random Effect Standard Variance Deviation Component df Chi-square P-value _____
 INTRCPT1,
 U0
 1.99113
 3.96459
 158
 766.83844
 0.000

 SES slope,
 U1
 0.67075
 0.44990
 159
 216.12223
 0.002

 level-1,
 R
 6.06589
 36.79508
 36.79508
 36.79508
 _____ Statistics for current covariance components model _____ Deviance = 46601.861400 Number of estimated parameters = 4

0.000

0.000

P-value

158 0.000

159 0.000

0.000

158

158

Now the intercept is the value for average SES student in a public school: 11.48. The value for an average-SES Catholic school student is 2.53 units higher: 11.45+2.53=13.98 Further, one unit increase in SES is associated with 2.39 units increase in math score. But there is still significant variation across schools in intercepts, and there is also significant variation in SES slopes – so SES doesn't have the same effect across schools.

Model 5. Intercepts and Slopes as outcomes (a.k.a. Cross-level Interactions model)

Next, we will try to explain this variation in SES effects across schools – we'll explore whether this variation can be attributed to the type of school – public vs Catholic.

LEVEL 1 MODEL

 $MATHACH_{ij} = \beta_{0j} + \beta_{1j}(SES_{ij}) + r_{ij}$

LEVEL 2 MODEL

 $\beta_{0j} = \gamma_{00} + \gamma_{01} (\text{SECTOR}_j) + u_{0j}$ $\beta_{1i} = \gamma_{10} + \gamma_{11} (\text{SECTOR}_j) + u_{1i}$

This type of model allows us to explain the variation in both intercepts and slopes. Sometimes, it's called cross-level interactions model because we make the effect of level-1 variables (SES) dependent upon the value of level-2 variables (in this case, SECTOR).

```
Sigma squared = 36.76311
Тац
INTRCPT1,B0 3.83295 0.54112
SES,B1 0.54112 0.12988
Tau (as correlations)
INTRCPT1,B0 1.000 0.767
    SES, B1 0.767 1.000
 Random level-1 coefficient Reliability estimate
_____
 INTRCPT1, B0
                          0.759
   SES, Bl
                          0.064
_____
The value of the likelihood function at iteration 198 = -2.328373E+004
The outcome variable is MATHACH
Final estimation of fixed effects:
 _____
  StandardApprox.Fixed EffectCoefficientErrorT-ratiod.f.P-value
_____
For INTRCPT1, B0
INTRCPT2, G00 11.750237 0.232241 50.595 158 0.000
SECTOR, G01 2.128611 0.346651 6.141 158 0.000
For SES slope, B1
  INTRCPT2, G102.9587980.14546020.3411580.000SECTOR, G11-1.3130960.219062-5.9941580.000
```

The outcome variable is MATHACH Final estimation of fixed effects

Fixed Effect	Coefficient	Standard Error	 T-ratio	Approx. d.f.	P-value
For INTRCPT1, B INTRCPT2, G00 SECTOR, G01 For SES slope, B INTRCPT2, G10 SECTOR, G11	0 11.750237 2.128611 1 2.958798 -1.313096	0.218675 0.355697 0.144092 0.214271	53.734 5.984 20.534 -6.128	158 158 158 158	0.000 0.000 0.000 0.000
Final estimation of v	ariance componer	its:			
Random Effect	Standard Deviation	Variance Component	df	Chi-square	P-value
INTRCPT1, U0 SES slope, U1 level-1, R	1.95779 0.36039 6.06326	3.83295 0.12988 36.76311	158 158	756.04082 178.09113	0.000 0.131
Statistics for curren	t covariance com	ponents mod	el		
Deviance Number of estimated p	= 4656 arameters = 4	57.464841			

In terms of fixed effects, the difference between this model and the previous one is the introduction of the effect of SECTOR on SES, which can be interpreted as an interaction term between SECTOR and SES. That is, the effect of SES for public schools is 2.96 per one unit increase in SES; but for Catholic schools, the effect of SES is (2.96-1.31)=1.65 per one unit increase in SES. So students' math scores are more sensitive to their SES in public schools than in Catholic schools.

Significance tests tell us that the effect of SES is significant in public schools (that's significance test for G10), and that SES effect is significantly different in Catholic vs public schools (that's significance test for G11), but how do we find out if SES has a significant effect on math achievement in Catholic schools? That is, how do we know if that 1.65 is significantly different from zero? To answer that question, we would need to calculate a significance test for that coefficient. For that, we should first calculate the standard error of this so-called "simple slope" using the following formula:

$$\mathbf{S}_{b(X \text{ at } Y=Z)} = \operatorname{sqrt}[\mathbf{S}^{2}_{bXmain} + 2 \mathbf{S}^{2}_{bXmain} + (Z)^{2} \mathbf{S}^{2}_{bXY}]$$

(with robust standard errors)

where S^2_{bXmain} is the squared standard error of the main effect of X, S^2_{bXY} is the squared standard error of the interaction term between X and Y, and $S^2_{bXmain_bXY}$ is the covariance of the two (main effect and interaction); this covariance can be obtained from the covariance matrix of regression coefficients that can be generated by selecting Other Settings \rightarrow Output Settings and checkmarking the corresponding box. When we run the model after that, we get the additional message:

```
tauvc.dat, containing tau has been created.
gamvc.dat, containing the variance-covariance matrix of gamma has been
created.
gamvcr.dat, containing the robust variance-covariance matrix of gamma has
```

been created.

When we open gamvc.dat, we see

-1.3130961	2.9587976	2.1284225	11.7506613
-9.1020632E-003	9.1020632E-003	-5.3938317E-002	5.3938317E-002
1.3365313E-002	-9.1020632E-003	1.2017077E-001	-5.3938317E-002
-2.1158704E-002	2.1158704E-002	-9.1020632E-003	9.1020632E-003
4.7987956E-002	-2.1158704E-002	1.3365313E-002	-9.1020632E-003

The first row lists coefficients themselves (G00, G01, G10, G11) in order to label the columns. Therefore, S_{bXmain}^2 is the squared standard error of the main effect of SES (G10) = 2.1158704E-002 = .021158704. S_{bXmain}^2 is the squared standard error of the interaction term (G11) = 4.7987956E-002 = .047987956. $S_{bXmain_bXY}^2$ is the covariance of the two = -2.1158704E-002 = -.021158704.

In this case, Z=1 because the difference between public (0) and Catholic (1) is 1, but if the moderator variable is continuous, Z can be something else; for example, the standard deviation of Y. So $S_{b(X \text{ at } Y=Z)} = \text{sqrt}(.021158704+2*-.021158704+1*.047987956}) = .16379637$

Therefore, t-ratio: 1.65/.164=10.06, which is well above the cutoff for p<.001 for large samples (t=3.29). Therefore, the simple slope of SES at SECTOR=1 is statistically significant.

Preacher and colleagues present an online calculator to compute the tests of simple slopes at http://www.quantpsy.org/interact/hlm2.htm

Our case is case 3 as we have a cross-level interaction; note that the order of gammas in the calculator is different from the order in the output. After entering all the values, we get:

CASE 3 TWO-WAY INTERACTION SIMPLE SLOPES OUTPUT

Your Input

w1(1)	= 0
w1(2)	= 1
Intercept	= 11.7506613
x1 Slope	= 2.9587976
w1 Slope	= 2.1284225
w1x1 Slope	= -1.3130961
alpha	= 0.05
df(int)	= 158
df(slp)	= 158
Asymptotic (Co)variances
Asymptotic (Co)variances
Asymptotic (Co ====================================	b)variances ====================================
Asymptotic (Co ====================================	b)variances 05393832 0211587
Asymptotic (Cd 	b)variances
Asymptotic (Cd ====================================	b)variances 05393832 0211587 12017077 04798796
Asymptotic (Cd ====================================	<pre>b) variances 05393832 0211587 12017077 04798796 0 -0.05393832</pre>
Asymptotic (Cd ====================================	b) variances D5393832 D211587 12017077 D4798796) -0.05393832) -0.0211587
Asymptotic (Cd var(g00) 0.0 var(g10) 0.0 var(g01) 0.0 var(g11) 0.0 cov(g00,g01) cov(g10,g11) cov(g00,g10)	b) variances D5393832 D211587 12017077 D4798796) -0.05393832) -0.0211587) 0.00910206

```
Region of Significance on w (level-2 predictor)
        ______
 w1 at lower bound of region = 1.7821
 w1 at upper bound of region = 3.166
 (simple slopes are significant *outside* this region.)
Simple Intercepts and Slopes at Conditional Values of w
_____
 At w1(1)...
   simple intercept = 11.7507(0.2322), t=50.5957, p=0
   simple slope = 2.9588(0.1455), t=20.3409, p=0
 At w1(2)...
   simple intercept = 13.8791(0.2574), t=53.9294, p=0
   simple slope = 1.6457(0.1638), t=10.0472, p=0
Simple Intercepts and Slopes at Region Boundaries for w
_____
 Lower Bound...
   simple intercept = 15.5437(0.4933), t=31.51, p=0
   simple slope = 0.6187(0.3133), t=1.975, p=0.05
 Upper Bound...
   simple intercept = 18.4892(0.9576), t=19.3085, p=0
   simple slope = -1.1985(0.6068), t=-1.9751, p=0.05
The relevant information is:
   simple slope = 1.6457(0.1638), t=10.0472, p=0
```

Next, going back to HLM output, we can also examine the amount of variance in SES slopes explained by SECTOR: the unconditional variance in SES slopes was 0.44990, and the variance in this model (controlling for SECTOR) is only 0.12988.

(0.44990 - 0.12988)/0.44990 = .71131363

So SECTOR explained 71% of between-school variance in effects of SES on math achievement. Also note that now that we controlled for sector, the variation in SES slopes across schools is no longer significant. Therefore, we could run this model as a model with nonrandomly varying slopes.

Model 6. Model with Nonrandomly Varying Slopes.

```
LEVEL 1 MODEL

MATHACH<sub>ij</sub> = \beta_{0j} + \beta_{1j}(SES_{ij}) + r_{ij}

LEVEL 2 MODEL

\beta_{0j} = \gamma_{00} + \gamma_{01}(SECTOR_j) + u_{0j}

\beta_{1j} = \gamma_{10} + \gamma_{11}(SECTOR_j)

Sigma_squared = 36.84019

Tau

INTRCPT1, B0 3.69423
```

Tau (as correlations) INTRCPT1, B0 1.000 _____ Random level-1 coefficient Reliability estimate _____ INTRCPT1, B0 0.808 _____ _____ The value of the likelihood function at iteration 6 = -2.328616E+004The outcome variable is MATHACH Final estimation of fixed effects: _____ Standard Approx. Fixed Effect Coefficient Error T-ratio d.f. P-value _____ For INTRCPT1, B0 INTRCPT2, G00 11.797994 0.228514 51.629 158 0.000 SECTOR, G01 2.138170 0.341344 6.264 158 0.000 For SES slope, B1 INTRCPT2, G10 2.951177 0.140609 20.989 7181 0.000 SECTOR, G11 -1.312849 0.211996 -6.193 7181 0.000 _____ The outcome variable is MATHACH Final estimation of fixed effects (with robust standard errors) Standard Approx. Fixed Effect Coefficient Error T-ratio d.f. P-value _____ For INTRCPT1, B0 11.7573540.21497654.8801580.0002.1381700.3500286.1091580.000 INTRCPT2, G00 11.797994 0.214976 54.880 SECTOR, G01 2.138170 0.350028 6.109 SECTOR, G01 For SES slope, B1 INTRCPT2, G10 2.951177 0.143779 20.526 7181 0.000 SECTOR, G11 -1.312849 0.212824 -6.169 7181 0.000 _____ Final estimation of variance components: _____ Standard Variance df Chi-square P-value Deviation Component Random Effect _____ INTRCPT1, U0 1.92204 3.69423 158 837.19099 0.000 level-1, R 6.06961 36.84019 _____ Statistics for current covariance components model _____ Deviance = 46572.326387 Number of estimated parameters = 2

Note that we are able to model how sector shapes SES, but we do not allow any other variation in SES slopes because there is no significant variation beyond that accounted for by sector.