SC705: Advanced Statistics Instructor: Natasha Sarkisian Class notes: Longitudinal Data Analysis in HLM and SEM

Growth Curve Models in HLM

So far, when using HLM, we've worked with one type of hierarchical data – students nested within schools. HLM can also be used to model longitudinal data where multiple observations over time are nested within one person.

We will use NYS2.MDM from Chapter 9 folder. This file contains data for a cohort of adolescents in the National Youth Survey, ages 14 to 18. The dependent variable ATTIT is a 9item scale assessing attitudes favorable to deviant behavior (property damage, drug and alcohol use, stealing, etc.). The level-1 independent variables include: EXPO measuring exposure to deviant peers (students were asked how many of their friends engaged in the 9 deviant behaviors), AGE (age in years), AGES (age in years squared), AGE14 (age minus 14), AGE16 (age minus 16), AGE145 (age minus 14.5), and the three corresponding squared variables. Level 2 include person-level variables: FEMALE, MINORITY, INCOME, and an interaction term for MINFEM.

What we will study is how attitudes change over time, and what shapes that change. First, let's examine individual trajectories.

Now let's try to model these trajectories. First, we will assume that we can model them using a linear model. Therefore, we'll estimate an unconditional linear growth model:

```
Level-1 Model
     Y = B0 + B1*(AGE16) + R
Level-2 Model
     B0 = G00 + U0
     B1 = G10 + U1
Sigma squared =
                   0.02873
Tau
INTRCPT1,B0
              0.04572
                           -0.00093
   AGE16,B1
               -0.00093
                           0.00313
Tau (as correlations)
INTRCPT1,B0 1.000 -0.078
AGE16,B1 -0.078 1.000
 _____
 Random level-1 coefficient Reliability estimate
 _____
                                _____
 INTRCPT1, B0
                                  0.837
    AGE16, B1
                                  0.453
   _____
The outcome variable is
                       ATTIT
```

Final estimation of fi	xed effects:				
Fixed Effect	Coefficient	Standard Error	T-ratio	Approx. d.f.	P-value
For INTRCPT1, B0 INTRCPT2, G00 For AGE16 slope, B1	0.493325	0.014864	33.189	240	0.000
INTRCPT2, G10	0.032357	0.005350	6.048	240	0.000
The outcome variable i	s ATTIT				
Final estimation of fi (with robust standard	xed effects errors)				
Fixed Effect	Coefficient	Standard Error	T-ratio	Approx. d.f.	P-value
For INTRCPT1, B0 INTRCPT2, G00 For AGE16 slope, B1	0.493325	0.014833	33.259	240	0.000
INTRCPT2, G10	0.032357	0.005338	6.061	240	0.000
Final estimation of va	riance componer	nts:			
Random Effect	Standard Deviation	Variance Component	df	Chi-square	P-value
INTRCPT1, U0 AGE16 slope, U1 level-1, R	0.21383 0.05595 0.16949	0.04572 0.00313 0.02873	235 235	1754.38522 446.20764	0.000 0.000
Statistics for current	covariance comp	oonents mode			
Deviance Number of estimated pa	= -99. rameters = 4	. 676230			

The mean growth trajectory is: Attitude=.493 + .032*Age16

Now let's estimate an unconditional quadratic growth model and compare the fit:

```
Level-1 Model

Y = B0 + B1*(AGE16) + B2*(AGE16S) + R

Level-2 Model

B0 = G00 + U0

B1 = G10 + U1

B2 = G20 + U2

Sigma_squared = 0.02291

Tau

INTRCPT1,B0 0.05825 -0.00033 -0.00416

AGE16,B1 -0.00033 0.00369 -0.00033
```

Tau (as correlations) INTRCPT1,B0 1.000 -0.022 -0.502 AGE16,B1 -0.022 1.000 -0.160 AGE16S,B2 -0.502 -0.160 1.000

Random lev	vel-1 coefficie	nt Reliability estimate	
INTRCPT1,	B0	0.822	
AGE16,	B1	0.530	
AGE16S,	B2	0.358	

Final estimation of fixed effects:

Fixed Effect	Coefficient	Standard Error	T-ratio	Approx. d.f.	P-value
For INTRCPT1, B0 INTRCPT2, G00	0.514018	0.017307	29.700	240	0.000
For AGE16 slope, B1 INTRCPT2, G10	0.031463	0.005333	5.900	240	0.000
For AGE16S slope, B2 INTRCPT2, G20	-0.010696	0.003652	-2.929	240	0.004

Final estimation of fixed effects

(with robust standard errors)

Fixed Effe	ect		Coefficient	Standard Error	T-ratio	Approx. d.f.	P-value
For INT INTRCPT2,	TRCPT1, H G00	в0	0.514018	0.017270	29.764	240	0.000
For AGE16	slope, H	в1					
INTRCPT2,	G10		0.031463	0.005320	5.914	240	0.000
For AGE16S INTRCPT2,	slope, H G20	в2	-0.010696	0.003643	-2.936	240	0.004

Final estimation of variance components:

Random Effect		Standard Deviation	Variance Component	df	Chi-square	P-value
INTRCPT1,	U0	0.24135	0.05825	222	1247.17000	0.000
AGE16 slope,	U1	0.06075	0.00369	222	503.78215	0.000
AGE16S slope,	U2	0.03437	0.00118	222	347.59593	0.000
level-1,	R	0.15136	0.02291			

Statistics for current covariance components model

Deviance = -129.616127Number of estimated parameters = 7

The average growth trajectory becomes: Attitude = 0.514+.031*Age16 - 0.011*Age16S Our quadratic model does have smaller deviance value, but let's test the quadratic model against the linear model:

```
Variance-Covariance components test

Chi-square statistic = 29.93990

Number of degrees of freedom = 3

P-value = 0.000
```

We conclude that quadratic model is a better fit, and proceed to estimating conditional models using person-level (time-invariant) predictors at first.

```
The model specified for the fixed effects was:
 _____
                   Level-2
Predictors
  Level-1
  Coefficients
 ----- -----
        INTRCPT1, B0
                         INTRCPT2, G00
                            FEMALE, G01
                           MINORITY, G02
                            INCOME, G03
$
     AGE16 slope, B1
                         INTRCPT2, G10
                            FEMALE, G11
                           MINORITY, G12
$
                            INCOME, G13
                         INTRCPT2, G20
     AGE16S slope, B2
                            FEMALE, G21
                           MINORITY, G22
$
                             INCOME, G23
'$' - This level-2 predictor has been centered around its grand mean.
Level-1 Model
      Y = B0 + B1*(AGE16) + B2*(AGE16S) + R
Level-2 Model
      B0 = G00 + G01*(FEMALE) + G02*(MINORITY) + G03*(INCOME) + U0
      B1 = G10 + G11*(FEMALE) + G12*(MINORITY) + G13*(INCOME) + U1
      B2 = G20 + G21*(FEMALE) + G22*(MINORITY) + G23*(INCOME) + U2
Sigma squared =
                   0.02291
 Tau

        INTRCPT1,B0
        0.05662
        -0.00042
        -0.00391

        AGE16,B1
        -0.00042
        0.00364
        -0.00025

        AGE16S,B2
        -0.00391
        -0.00025
        0.00112

Tau (as correlations)
 INTRCPT1,B0 1.000 -0.029 -0.492
AGE16,B1 -0.029 1.000 -0.122
   AGE16S, B2 -0.492 -0.122 1.000
 Random level-1 coefficient Reliability estimate
 _____
 INTRCPT1, B0
                                      0.818
    AGE16, B1
                                      0.527
   AGE16S, B2
                                      0.346
 _____
```

Final	estimation	of	fixed	effects:	
-------	------------	----	-------	----------	--

Fixed Eff	ect		Coefficient	Standard Error	T-ratio	Approx. d.f.	P-value
For IN	TRCPT1,	в0					
INTRCPT2,	G00		0.562491	0.025856	21.754	237	0.000
FEMALE,	G01		-0.100283	0.034929	-2.871	237	0.005
MINORITY,	G02		-0.019852	0.044100	-0.450	237	0.653
INCOME,	G03		0.003602	0.007755	0.464	237	0.642
For AGE16	slope,	В1					
INTRCPT2,	G10		0.039149	0.008110	4.827	237	0.000
FEMALE,	G11		-0.003239	0.010823	-0.299	237	0.765
MINORITY,	G12		-0.028441	0.013824	-2.057	237	0.040
INCOME,	G13		-0.003963	0.002373	-1.670	237	0.096
For AGE16S	slope,	В2					
INTRCPT2,	G20		-0.019852	0.005501	-3.609	237	0.001
FEMALE,	G21		0.014754	0.007364	2.003	237	0.046
MINORITY,	G22		0.012461	0.009468	1.316	237	0.190
INCOME,	G23		0.002798	0.001620	1.727	237	0.085

Final estimation of fixed effects (with robust standard errors)

F	ixed Eff	ect		Coefficient	Standard Error	T-ratio	Approx. d.f.	P-value
For	IN'	TRCPT1,	в0					
I	NTRCPT2,	G00		0.562491	0.029658	18.966	237	0.000
	FEMALE.	G01		-0.100283	0.034379	-2.917	237	0.004
М	INORITY,	G02		-0.019852	0.039082	-0.508	237	0.611
	INCOME.	G03		0.003602	0.006930	0.520	237	0.603
For	AGE16	slope,	в1					
I	NTRCPT2,	G10		0.039149	0.007686	5.094	237	0.000
	FEMALE,	G11		-0.003239	0.010304	-0.314	237	0.753
М	INORITY,	G12		-0.028441	0.014088	-2.019	237	0.044
	INCOME,	G13		-0.003963	0.002075	-1.910	237	0.057
For	AGE16S	slope,	в2					
I	NTRCPT2,	G20		-0.019852	0.006129	-3.239	237	0.002
	FEMALE,	G21		0.014754	0.007121	2.072	237	0.039
М	INORITY,	G22		0.012461	0.009555	1.304	237	0.194
	INCOME,	G23		0.002798	0.001383	2.023	237	0.044
Fina	l estima	tion of	var	iance compone	nts:			
Rand	om Effec	t		Standard Deviation	Variance Component	df	Chi-square	P-value
INTR	 CPT1,	 U0		0.23795	0.05662	219	1196.00045	0.000

 AGE16 slope, U1
 0.06030
 0.00364
 219
 495.23926
 0.000

 AGE16s slope, U2
 0.03342
 0.00112
 219
 336.68827
 0.000

 level-1,
 R
 0.15135
 0.02291
 0.02291

Finally, let's estimate a quadratic growth model with a time-varying covariate (EXPO). Here, we will use EXPO grand-centered. If we wanted to take this analysis one step further, we could have created a mean exposure variable on person level (level 2) and then used EXPO group centered on level 1 and mean of EXPO on level 2.

Level-1 Level-2 Coefficients Predictors _____ ____ INTRCPT1, B0 INTRCPT2, G00 FEMALE, G01 MINORITY, G02 \$ INCOME, G03 % EXPO slope, B1 INTRCPT2, G10 FEMALE, G11 MINORITY, G12 \$ INCOME, G13 INTRCPT2, G20 AGE16 slope, B2 FEMALE, G21 MINORITY, G22 INCOME, G23 \$ AGE16S slope, B3 INTRCPT2, G30 FEMALE, G31 MINORITY, G32 \$ INCOME, G33 '%' - This level-1 predictor has been centered around its grand mean. '\$' - This level-2 predictor has been centered around its grand mean. Level-1 Model Y = B0 + B1*(EXPO) + B2*(AGE16) + B3*(AGE16S) + R Level-2 Model B0 = G00 + G01*(FEMALE) + G02*(MINORITY) + G03*(INCOME) + U0B1 = G10 + G11*(FEMALE) + G12*(MINORITY) + G13*(INCOME) + U1 B2 = G20 + G21*(FEMALE) + G22*(MINORITY) + G23*(INCOME) + U2 B3 = G30 + G31*(FEMALE) + G32*(MINORITY) + G33*(INCOME) + U3 Sigma squared = 0.02030 Tau -0.00288 0.03327 -0.00273 0.00195 0.00068 -0.00273 0.00276 -0.00034 -0.00147 INTRCPT1,B0 0.02273 EXPO,B1 -0.00288 0.00185 AGE16,B2 0.00068 -0.00034 AGE16S,B3 -0.00147 0.00185 0.00058 Tau (as correlations) INTRCPT1,B0 1.000 -0.105 0.086 -0.405 EXPO, B1 -0.105 1.000 -0.285 0.420 AGE16, B2 0.086 -0.285 1.000 -0.270 AGE16S, B3 -0.405 0.420 -0.270 1.000 _____ Random level-1 coefficient Reliability estimate _____ INTRCPT1, B0 0.342 EXPO, B1 0.062 AGE16, B2 0.330 AGE16S, B3 0.166 _____ Final estimation of fixed effects: _____ Standard Approx. Fixed Effect Coefficient Error T-ratio d.f. P-value _____

For IN	TRCPT1,	BО							
INTRCPT2,	G00		0.536548	0.018864	28.443	237	0.000		
FEMALE,	G01		-0.087195	0.025319	-3.444	237	0.001		
MINORITY,	G02		-0.003917	0.032033	-0.122	237	0.903		
INCOME.	G03		0.006434	0.005601	1.149	237	0.252		
For EXPO	slope.	B1							
TNTRCPT2	G10	DI	0 551921	0 041454	13 314	237	0 000		
EEMATE	C11		-0 049549	0.050200	-0 033	237	0.000		
FEMALE,	C12		-0.040349	0.030290	-0.033	237	0.400		
MINORIII,	GIZ G12		-0.404139	0.071710	-3.030	237	0.000		
INCOME,	GI3	50	-0.042315	0.013089	-3.233	237	0.002		
For AGE16	slope,	B2							
INTRCPT2,	G20		0.018852	0.007483	2.519	237	0.013		
FEMALE,	G21		0.008663	0.009922	0.873	237	0.384		
MINORITY,	G22		-0.008015	0.012682	-0.632	237	0.528		
INCOME,	G23		-0.001653	0.002179	-0.759	237	0.449		
For AGE16S	slope,	вЗ							
INTRCPT2,	G30		-0.011305	0.004845	-2.333	237	0.021		
FEMALE,	G31		0.014522	0.006476	2.242	237	0.026		
MINORITY.	G32		0.003959	0.008345	0.474	237	0.635		
TNCOME	633		0 002238	0 001416	1 580	237	0 115		
Final estima (with robust	tion of standa	fixe rd e:	ed effects rrors)						
				Standard		Approx			
Fived Fff			Coefficient	Frror	T-ratio	d f	P-value		
FIXEd BII									
For IN	ຫວ <i>ດ</i> ວຫ1	ΒÛ							
TUT IN	coo	DU	0 526540	0 010000	26 027	227	0 000		
INIRCPIZ,	G00 C01		0.007105	0.019995	20.03/	237	0.000		
FEMALE,	GUI		-0.08/195	0.024535	-3.554	237	0.001		
MINORITY,	GUZ		-0.00391/	0.032658	-0.120	237	0.905		
INCOME,	GO3		0.006434	0.005623	1.144	237	0.254		
For EXPO	slope,	В1							
INTRCPT2,	G10		0.551921	0.038407	14.370	237	0.000		
FEMALE,	G11		-0.048549	0.057455	-0.845	237	0.399		
MINORITY,	G12		-0.404139	0.072271	-5.592	237	0.000		
INCOME,	G13		-0.042315	0.014359	-2.947	237	0.004		
For AGE16	slope,	в2							
INTRCPT2,	G20		0.018852	0.007315	2.577	237	0.011		
FEMALE.	G21		0.008663	0.009423	0.919	237	0.359		
MINORITY.	G22		-0 008015	0 013110	-0 611	237	0 541		
TNCOME.	G23		-0.001653	0 002002	-0.826	237	0 410		
For AGE16S	slope	вЗ	0.001000	0.002002	0.020	207	0.110		
TNTRCPT?	G30	20	-0 011305	0 004920	-2 298	237	0 022		
FEMATE	C 2 1		0.011505	0.004920	2.250	237	0.022		
FEMALE,	GSI		0.014322	0.000166	2.333	237	0.019		
MINORITY,	G32		0.003959	0.008/55	0.452	237	0.651		
INCOME,	G33		0.002238	0.001269	1./63	237	0.079		
Final estima	Final estimation of variance components:								
Random Effec	t		Standard	Variance	df	Chi-square	P-value		
			Deviation	Component		-10			
TNTRCPT1	TIΟ		0 15078	0 02273	197	402 26089	0 000		
EXDU ele	00 111 00		0.18240	0 03307	197	244 37700			
ACE16 ala	Pe^{0}		0.10240	0.03327	107	244.3//00	0.012		
AGEIO SIO	pe, UZ		0.00202	0.002/6	107	JU1.133U3	0.000		
AGEIDS SLO	pe, Us		0.02415	0.00058	T A /	230.30418	0.006		
⊥eve⊥-1,	R		0.14248	0.02030					

Example: Baldwin, Scott A., and John P. Hoffmann. 2002. The Dynamics of Self-Esteem: A Growth-Curve Analysis. *Journal of Youth and Adolescence*, *31*, 2, 101–113.

Latent Growth Models in SEM

In order to understand the implementation of latent growth models in SEM, we need to first consider the issue of SEM with mean structures.

Mean structures

So far in using SEM we were only dealing with covariances. Oftentimes, however, we are also interested in means – either their absolute value or how they differ by group (especially means of latent variables).

This type of analysis requires both the covariance matrix and the means. Essentially, what it does is it introduces intercepts into the measurement models and the structural model: That is, so far we used:

 $X = \Lambda_x \xi + \delta$ $Y = \Lambda_y \eta + \varepsilon$ $\eta = B\eta + \Gamma \xi + \zeta$

Now we add the intercepts:

 $X = \tau_x + \Lambda_x \xi + \delta$ $Y = \tau_y + \Lambda_y \eta + \varepsilon$ $\eta = \alpha + B\eta + \Gamma \xi + \zeta$

So we have four extra vectors now: τ_x is the vector of means for indicators x τ_y is the vector of means for indicators y α is the vector of means (really, intercepts) of endogenous latent variables κ is the vector of means of exogenous latent variables

See handout, pp.306-307 from Byrne

The way we can represent that graphically is by introducing the constant into the diagram:

FIGURE 11.1. A path model with a mean structure.

(From Kline, 3rd ed, p. 301)

Identification of models with means:

In models with means we need to take into account whether the mean structure is identified. The rule is that the total number of means and intercepts cannot exceed the total number of means of observed variables. We can also count the total number of data points and total number of parameters by counting means and intercepts as parameters and the number of data points as $n^{*}(n+3)/2$. Note that the identification constraints do not allow us to have a model with constants for measurement equations of all indicators evaluated alongside the mean for the latent factor – we have to either assume the mean of the latent factor to be zero or intercepts for indicators are zero. So we could specify vectors TX and TY as free and KA and AL as fixed to zero, or KA and AL as free and TX and TY as 0.

Latent growth models

The idea of growth models in SEM is the same as in HLM: we allow starting values and the trajectories to vary from person to person, and calculate average trajectory as well as the amount of variance around it; then we try to explain that variance. So the intercept and the slope (effect of time) in HLM were random variables. But in SEM we conceptualize both the intercept and the growth slope as latent variables.

FIGURE 11.2. Latent growth model of change in level of alcohol use over 4 years.

(Kline, 3rd ed, p. 307)

Note that the factor loadings for the intercept should all be set to 1. Factor loadings for the slope, however, can be specified differently, depending on the time intervals between the observations. In this example, all time intervals are equal, therefore the distances between the values of factor loadings are also equal. The factor loadings also depend on which time point we want to become

the intercept. For instance, in this example, the first time point is selected to be the intercept, but in the example that we'll do below, third time point will be the intercept.

Note that we also need to specify the mean structure for those latent variables in order to be able to get the mean values for them (like in HLM, where we had fixed effects and variance components, here too we want to have the mean value and the variance estimate for intercept and slope).

One advantage of doing this model in LISREL rather than in HLM is that in LISREL we can allow for correlated measurement errors (typically, serially correlated, like in the diagram). A disadvantage, however, is that we have to have equal number of observations per person, and they have to be done at the same time – this stems from the way the data have to be structured for this type of analysis.

LISREL example

For an example of doing this in LISREL, we'll use the same data we used with HLM: NYS2 in Chapter 9 of HLM6. But, here we need to structure it differently. To prepare the data, I merged Nys21.sav and Nys22.sav into a single file (matched on id), that has the following variables: attit

expo age ages age14 age16 age145 age145 age145 age145s id female minority income

I transferred it to Stata using StatTransfer program, and then did the following:

drop ages-age145s
reshape wide attit expo, i(id) j(age)

The resulting dataset contains: id attit14 expo14 attit15 expo15 attit16 expo16 attit17 expo17 attit18 expo18 female minority income minfem

I transferred it back to SPSS to import it into LISREL. This file (nys2.sav) is available on the course website. Upon importing the data, we should define variables and obtain the covariance matrix and the means – these will be in files nys.cov and meansnys.mea.

!Prelis syntax
SY='C:\nys2.PSF'
OU MA=CM SM=nys.cov ME=meansnys.mea

Like in HLM, first we want to start with the basic change model, without any explanatory variables.

```
TI Change only (random intercept and slope) model for attitude
DA NI=15 NO=241 MA=CM
LA
ID
   ATTIT14 EXPO14 ATTIT15
                                 EXPO15 ATTIT16
                                                    EXPO16 ATTIT17
EXPO17 ATTIT18 EXPO18
                           FEMALE MINORITY INCOME MINFEM
CM=C:\nys.cov
ME =C:\meansnys.mea
SE
246810/
MO NX=5 NK=2 LX=FU, FI PH=SY,FR TD=SY, FI TX=FI KA=FR
LK
INTERCPT SLOPE
FR TD 1 1 TD 2 2 TD 3 3 TD 4 4 TD 5 5 TD 2 1 TD 3 2 TD 4 3 TD 5 4
VA 1.0 LX 1 1 LX 2 1 LX 3 1 LX 4 1 LX 5 1
VA -2.0 LX 1 2
VA -1.0 LX 2 2
VA 0.0 LX 3 2
VA 1.0 LX 4 2
VA 2.0 LX 5 2
PD
OU
```

Estimates:

Chi-Square=21.86, df=6, P-value=0.00129, RMSEA=0.105

Significances:

Means:


```
Now let's estimate the same change model but with a quadratic term:
TI Change only (random intercept and slope) model for attitude, with quadratic term
DA NI=15 NO=241 MA=CM
LA
ID ATTIT14
              EXPO14 ATTIT15
                                  EXPO15 ATTIT16
                                                       EXPO16 ATTIT17
EXPO17 ATTIT18 EXPO18
                             FEMALE MINORITY INCOME MINFEM
CM=C:\nys.cov
ME =C:\meansnys.mea
SE
246810/
MO NX=5 NK=3 LX=FU, FI PH=SY,FR TD=SY, FI TX=FI KA=FR
LK
INTERCPT SLOPE SLOPE2
FR TD 1 1 TD 2 2 TD 3 3 TD 4 4 TD 5 5 TD 2 1 TD 3 2 TD 4 3 TD 5 4
VA 1.0 LX 1 1 LX 2 1 LX 3 1 LX 4 1 LX 5 1
VA -2.0 LX 1 2
VA -1.0 LX 2 2
VA 0.0 LX 3 2
VA 1.0 LX 4 2
VA 2.0 LX 5 2
VA 4.0 LX 1 3
VA 1.0 LX 2 3
VA 0.0 LX 3 3
VA 1.0 LX 4 3
VA 4.0 LX 5 3
PD
OU
```

00

Estimates:

Chi-Square=3.07, df=2, P-value=0.21554, RMSEA=0.047

Check whether there is a significant improvement in chi-square:

21.86-3.07=18.79, df=6-2=4

Alpha=.01 critical value for df=4 is 13.28, so it's a significant improvement. We can also see that in RMSEA and chi-square significance.

The second step of this process is to predict change. Here, we will predict change using time-invariant (i.e. level 2) variables, GENDER, MINORITY, and INCOME:

TI Predicting change in the random intercept and slope for attitude, with quadratic term DA NI=15 NO=241 MA=CM LA

ID ATTIT14 EXPO14 ATTIT15 EXPO15 ATTIT16 EXPO16 ATTIT17 EXPO17 ATTIT18 EXPO18 FEMALE MINORITY INCOME MINFEM CM=nys.cov ME =meansnys.mea SE 2 4 6 8 10 12 13 14/ MO NY=5 NE=3 NX=3 NK=3 LX=ID LY=FU,FI PH=SY,FR PS=SY,FR TD=ZE TE=SY, FI TY=FI TX=FI KA=FR AL=FR GA=FR LK FEMALE MINORITY INCOME LE **INTERCPT SLOPE SLOPE2** FR TE 1 1 TE 2 2 TE 3 3 TE 4 4 TE 5 5 TE 2 1 TE 3 2 TE 4 3 TE 5 4 VA 1.0 LY 1 1 LY 2 1 LY 3 1 LY 4 1 LY 5 1 VA -2.0 LY 1 2 VA -1.0 LY 2 2 VA 0.0 LY 3 2 VA 1.0 LY 4 2 VA 2.0 LY 5 2 VA 4.0 LY 13 VA 1.0 LY 2 3 VA 0.0 LY 3 3 VA 1.0 LY 4 3 VA 4.0 LY 5 3 PD OU

Chi-Square=52.27, df=8, P-value=0.00000, RMSEA=0.152

Example:

Wright, John Paul, David E. Carter, and Francis T. Cullen. 2005. "A Life-Course Analysis of Military Service in Vietnam." *Journal of Research in Crime and Delinquency*, 42(1), 55-83.

Other Types of Longitudinal models Using SEM

Longitudinal models are also very useful when we are interested in reciprocal relationships. Their value lies in the ability to examine both stability and change of variables (and relationships between variables) over time. Panel data are especially useful when we have repeat measures of the same variables (if they do not, then these data are analyzed the same way cross-sectional data would be).

Types of relationships in panel models:

- 1. Correlation between X1 and Y1 = synchronous correlation
- 2. Correlation between X1 and X2 and between Y1 and Y2 = autocorrelations, or stabilities.
- 3. Correlation between X1 and Y2 and between Y1 and X2 = cross-lagged correlations
- 4. The paths between measurement errors = autocorrelated error terms.

Figure 6.3. Two-Variable, Two-Wave Panel Model

Stability of measures

Stability is the most important concept added by panel models. If a variable is perfectly stable, that means that Y2 is perfectly determined by Y1 and has no other causes but itself. In this context, if we add some predictors at time 1, e.g. X1, we will find no causal relationship between X1 and Y2. Note that, in this situation, we would omit Y1 (or the relationship between Y1 and Y2) from the model, we would probably observe a relationship between X1 and Y2, but it would probably be erroneous to assume that X1 caused Y2 even though X1 happened prior to Y2 – the reason for their correlation lies in the correlation between X1 and the omitted Y1, and there may be many possible reasons for that correlation. So such a model can be misspecified, and, of course, if we don't have data on Y1, such a misspecification will likely go undetected.

E.g. if school achievement at time 2 is strongly related to school achievement at time 1, we cannot omit that relationship – if we do, we will witness many time1 predictors of time 2 school achievement, but they all may be misleading.

Note, that high stability for a variable means we will find very little in terms of causal antecedents for this variable. Low stability, in contrast, suggests that a variable is changing rapidly, and although this gives us an opportunity to find the causes for that change, it also may indicate low reliability of the measure or possibly even a change in that variable's meaning.

Note, that when working with longitudinal SEM models, you should use covariances and at all costs avoid using correlations as these remove differences in variability across time, and therefore ignore growth/change.

Autocorrelated error terms

These reflect the fact that when a measure is administered at different times, a substantial amount of variance may be shared because same method of data collection is used, or because respondents remember their earlier answers. We can only include these in the models if we have more than one indicator of X1 and X2, and Y1 and Y2 – otherwise, the model will not be identified. So if we suspect autocorrelated measurement errors, we need multiple-indicator models. Otherwise, to keep the model identified, we drop these paths, but by doing so, we incorporate any measurement-specific correlations into our measure of stability.

Note that in order to model these in LISREL, we need to be able to correlate measurement errors corresponding to exogenous variables' indicators with those of endogenous variables' indicators. This is done using an additional matrix – Theta Delta Epsilon, $\Theta \delta \epsilon$ (TH). By default, this matrix is a fixed matrix (all zeros) and we cannot free the entire matrix on MO line, but we can free its elements (usually want we want to free is its diagonal elements) using FR command; it is a square matrix with both dimensions = number of X indicators + number of Y indicators.

Stability of causal processes

Stability of causal processes is different from stability of measures – it means that the effects of X on Y is stable over time – i.e., is the same for every time interval of the same length. Typically, if we are interested in the effect of X on Y, it would be desirable for that effect to be stable, unless we predict that it varies over time for a certain reason. We can check such stability if we have more than two time points.

Also, we need to consider the issue of temporal lag – i.e., how long of a time interval do we have between time 1 and time 2. If that interval is too short, we might have not observed the effect of X on Y yet; if it's too long, that effect might have decayed from its maximum. This is even more complicated if we think that the optimum time lag would be different for the relationship $X \rightarrow Y$ vs. $Y \rightarrow X$. This is important to consider if one is collecting data; with secondary data, we usually have no choice.

Causal predominance

When examining reciprocity using panel data, we are often interested in evaluating causal predominance – i.e., which causal relationship is stronger, $X \rightarrow Y$ or $Y \rightarrow X$. To evaluate that, we need to first evaluate a model that estimates both freely, then constrain them to be equal (using EQ command, e.g., EQ GA 2 1 GA 1 2 or EQ BE 4 1 BE 3 2), and see if there was a significant decrease in fit by evaluating chi-square change between the unconstrained and constrained model. If there was no statistically decrease, none of the causal relationships dominates. If the fit decreases significantly, the relationships are different, and the one with the larger standardized coefficient indicates the causally predominant relationship. Note that if the two latent variables have different units (which is based on the units of the reference indicator), you have to standardize them first by setting their variance to 1 and estimating all the lambdas freely – otherwise, their coefficients will be different because their units are different.

<u>Example</u>: Maruyama, Geoffrey, Norman Miller, and Rolf Holtz. 1986. "The relation between popularity and achievement: a longitudinal test of the lateral transmission of value hypothesis." Journal of Personality and Social Psychology 51(4): 730-741.

Figure I. Panel model for examining the relation between peer popularity and achievement. (SES = socioeconomic status, measured by SEI [the Duncan Socioeconomic Index of Occupations], EDHH [educational attainment of the head of the household], and RR/P [the ratio of rooms in the home to people living in the home]; AB = academic ability, measured by RAV [Raven's Progressive Matrices] and PEA [the Peabody Picture Vocabulary Test]; TEV = teacher evaluations of students, measured by TMOT [teachers' ratings of students' motivation] and TEXP [teachers' expectations of their students' eventual educational attainment]; PAC = acceptance by peers, measured by SPOP [seating popularity], PPOP [playground popularity], and WPOP [schoolwork popularity]; and ACH = school achievement, measured by VACH [verbal standardized test performance] and VGR [verbal grades].)