SC708: Hierarchical Linear Modeling
 Instructor: Natasha Sarkisian
 Class notes: HLM Diagnostics

Like OLS, HLM models rely on certain assumptions that have to be satisfied in order for regression coefficients to be unbiased and efficient estimates of the parameters of interest. Therefore, it is important to watch out for possible assumption violations and to take steps to prevent them. We will address the issues of model specification, homoscedasticity, normality of level 1 and level 2 residuals, and linearity.

1. Model specification.

In HLM models, the issue of model specification concerns two main questions: (1) Did we include the right fixed effects? (2) Did we include the right random components? As we discussed, when specifying your model, you should rely heavily on your theory as well as utilize hypothesis testing. But there are some additional steps you can take to prevent model misspecification.

To prevent misspecification of fixed effects:

- Consider including aggregates of level 1 variables. It is always possible that what appears to be an effect of a level 1 variable is, in reality, an effect of its level 2 aggregate. The only way to test is to introduce such an aggregate. So far, we discussed aggregates to the mean, but sometimes, it is also possible to use group-level standard deviations. For example, you can use MEANSES to indicate the average level of SES in the school and SESDEV (within-school standard deviation) to indicate how diverse each school is in terms of SES. Such diversity may have an impact above and beyond the impact of the average level.
- Consider including level 2 predictors of level 1 slopes if you find significant variation in these slopes
- If the proportion of explained variance (R-squared) is substantially reduced when you add a fixed effect, that can be a sign of misspecification.
- Sometimes a fixed effect misspecification (e.g., a nonlinearity) can lead to a misspecification of the random effects (excluded curvilinear effect may show up as a significant variance component for the slope). We will return to the issue of linearity below.

To prevent the misspecification problems in terms of random components:

- Always test whether each of your level 1 slopes varies across level 2 units (i.e., try to estimate each slope as random). However, you have to be careful not to "overtax" your data.
- The number of iterations can be diagnostic - if the data are highly informative, the algorithm will converge rapidly (e.g. in less than 10 iterations). In contrast, if the model has an extensive number of random effects and the data are relatively sparse, hundreds of iterations may be needed. In general, you should be cautious in specifying level-1 coefficients as random - as the number of random effects grows, the number of variances/covariances to be estimated increases even faster (for m random predictors,
there are $1+\mathrm{m}(\mathrm{m}+1) / 2$ variance covariance components). As the number of random effects grows, significantly mode information is required to obtain reasonable estimates of variance/covariance components. The maximum depends on a number of factors: the magnitude of the variance components, the degree of intercorrelation among the random effects, the magnitude of sigma squared, and other characteristics of the data.
- If there are high correlations among level-1 coefficients (i.e., slopes for different variables - correlations with the intercept are ok), the model must be simplified. There are a number of ways of dealing with it. You can, for example, use factor analysis to form scales and reduce the number of variables. You can also constrain one or more random effects to be zero (i.e. keep only the fixed effect for that variable), thus eliminating the correlation. This works well if that random effect is negligible.

2. Multicollinearity

Like regular OLS, HLM models can be affected by multicollinearity. There are no tools to check for it in HLM, so you should do some tests before you import your data into HLM. You should check correlations among your independent variables as well as variance inflation factors (VIFs) in another statistical program. E.g. in Stata:

```
. pwcorr mathach ses female meanses sector size
```

	mathach	ses female meanses sector	size				
mathach \|	1.0000						
ses	0.3608	1.0000					
female	-0.1231	-0.0679	1.0000				
meanses	0.3437	0.5306	-0.0589	1.0000			
sector	0.2040	0.1896	0.0065	0.3573	1.0000		
size	-0.0506	-0.0673	-0.0388	-0.1268	-0.4237	1.0000	

. reg mathach ses female meanses sector size

Source	SS	df	MS	Number of obs	7185
				F (5, 7179)	315.35
Model	61205.6611	5	12241.1322	Prob > F	0.0000
Residual	278671.273	7179	38.8175614	R-squared	0.1801
				Adj R-squared	0.1795
Total	339876.934	7184	47.3102637	Root MSE	6.2304

| mathach \| | Coef. | Std. Err. | t | P>\|t| | [95\% Con | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ses \| | 2.148034 | . 1113801 | 19.29 | 0.000 | 1.929697 | 2.366372 |
| female \| | -1.321295 | . 1478042 | -8.94 | 0.000 | -1.611034 | -1.031555 |
| meanses \| | 2.889622 | . 2206451 | 13.10 | 0.000 | 2.457093 | 3.322151 |
| sector \| | 1.503238 | . 1724585 | 8.72 | 0.000 | 1.165169 | 1.841308 |
| size \| | . 0003457 | . 0001345 | 2.57 | 0.010 | . 0000821 | . 0006093 |
| _cons \| | 12.32108 | . 2222729 | 55.43 | 0.000 | 11.88536 | 12.7568 |

. vif

Variable	VIF	$1 / \mathrm{VIF}$
meanses	1.54	0.648947
ses	1.39	0.717093
sector	1.38	0.726733

size \|	1.22	0.818586
female \|	1.01	0.992362
------------+---------------------1.		

Different researchers advocate for different cutoff points for VIF. Some say that if any one of VIF values is larger than 4, there are some multicollinearity problems associated with that variable. Others use cutoffs of 5 or even 10 .

It is also useful to check level 2 separately:

```
. bysort id: egen mathachm=mean(mathach)
. reg mathach meanses sector size if case==1
\begin{tabular}{|c|c|c|c|}
\hline Source & SS & df & MS \\
\hline Model & 1087.63418 & 3 & 362.544726 \\
\hline Residual & 6814.85021 & 156 & 43.6849372 \\
\hline Total & 7902.48439 & 159 & 49.7011597 \\
\hline
\end{tabular}
\begin{tabular}{lrr} 
Number of obs & \(=\) & 160 \\
\(\mathrm{~F}(3,3156)\) & \(=8.30\) \\
Prob \(>\mathrm{F}\) & \(=0.0000\) \\
R-squared & \(=0.1376\) \\
Adj R-squared & \(=0.1210\) \\
Root MSE & \(=6.6095\)
\end{tabular}
```


Once you have your data in HLM and run your models, you should also watch out for potential signs of multicollinearity (e.g., large coefficients in opposite directions, high standard errors).

3. Homoscedasticity.

In HLM, the level-1 error terms should have equal variance across level-2 units (the assumption of homoscedasticity or homogeneity of variance) - e.g., all schools should have variances equal to the other schools in the sample. To test the homogeneity of variance assumption, under Other Settings \rightarrow Hypotheses testing, select "Test homogeneity of level-1 variance." Then run the model. The output looks like this:

Summary of the model specified (in equation format)

Level-1 Model


```
\begin{tabular}{cccrrr} 
INTRCPT1, & U0 & 1.54118 & 2.37524 & 157 & 604.29895
\end{tabular} 0.000
Statistics for current covariance components model
-------------------------------------------------------
Deviance = 46502.952743
Number of estimated parameters = 2
Test of homogeneity of level-1 variance
------------------------------------------
Chi-square statistic = 244.08638
Number of degrees of freedom = 159
P-value }=0.00
```

This output indicates that for this model, the assumption was violated, so the variance is heterogeneous. Note that this method relies on fitting separate OLS regressions in each of the groups, so there should be a substantial number of groups with a relatively large number of cases in each group in order for this test to be accurate.

Heterogeneity of variance can be a nuisance, or it can be substantively interesting. When it is a nuisance, the causes can be:

- One or more important level-1 predictors may have been omitted from the model.
- The effects of a level-1 predictor that is random or nonrandomly varying have been erroneously treated as fixed.
- Dependent variable is severely skewed.
- One (or more) of the independent variables has a nonlinear relationship to the dependent variable that we failed to model correctly.
- There are outliers or bad data.

Let's try and free the slope of SES:

```
Test of homogeneity of level-1 variance
    ------------------------------------------
    Chi-square statistic = 245.76576
    Number of degrees of freedom = 159
    P-value }=0.00
```

Still a problem. We could consider examining issues of normality or linearity, but for now, let's try to think about heterogeneity as substantively interesting and model it using level 1 predictors - to see whether there are some predictors that seem to explain differential level 1 variance:

```
RESULTS FOR HETEROGENEOUS SIGMA-SQUARED
(macro iteration 4)
Var(R) = Sigma_squared and
log(Sigma_squared) = alpha0 + alpha1(MINORITY) + alpha2(FEMALE) + alpha3(SES)
Model for level-1 variance
```


Looks like gender explains some heterogeneity - there is lower amount of unexplained variance in math achievement among girls. Further, heterogenous model has significantly lower deviance than the homogenous model. There is still some unexplained heterogeneity left, however. Note that HLM does not allow us to model the residual variance using level 2 (school) characteristics; another multilevel analysis program, MLwiN, does.

But so far, we did not have gender and minority variables in the model itself. So let's add them and see what happens. Let's try to add other level 1 predictors to the model:

LEVEL 1 MODEL

$$
\text { MATHACH }_{i j}=\beta_{0 j}+\beta_{1 j}\left(\text { MINORITY }_{i j}\right)+\beta_{2 j}\left(\text { FEMALE }_{i j}\right)+\beta_{3 j}\left(\text { SES }_{i j}-\overline{\text { SES }}_{. j}\right)+r_{i j}
$$

LEVEL 2 MODEL

$$
\begin{aligned}
& \beta_{0 j}=\gamma_{00}+\gamma_{01}\left(\text { SECTOR }_{j}\right)+\gamma_{02}\left(\text { MEANSES }_{j}-\text { MEANSES }^{\text {MES }}\right)+u_{0 j} \\
& \beta_{1 j}=\gamma_{10}+\gamma_{11}\left(\text { SECTOR }_{j}\right)+\gamma_{12}\left(\text { MEANSES }_{j}-\text { MEANSES. }\right)+u_{1 j} \\
& \beta_{2 j}=\gamma_{20}+\gamma_{21}\left(\text { SECTOR }_{j}\right)+\gamma_{22}\left(\text { MEANSES }_{j}-\text { MEANSES. }\right)+u_{2 j} \\
& \beta_{3 j}=\gamma_{30}+\gamma_{31}\left(\text { SECTOR }_{j}\right)+\gamma_{32}\left(\text { MEANSES }_{j}-\text { MEANSES. }^{2}\right)
\end{aligned}
$$

35.33424			
Standard Error	of Sigma	$d=$	$d=0.60442$
Tau			
INTRCPT1, B0	2.50575	-0.11413	-1.15746
MINORITY, B1	-0.11413	0.98114	0.18246
FEMALE, B2	-1.15746	0.18246	0.86444
Standard Errors of Tau			
INTRCPT1, B0	0.53220	0.50638	0.44703
MINORITY, B1	0.50638	0.71802	0.47533
FEMALE, B2	0.44703	0.47533	0.52350

Tau (as correlations)

Note: The reliability estimates reported above are based on only 100 of 160 units that had sufficient data for computation. Fixed effects and variance components are based on all the data.

Fixed Effect	Coefficient	Standard Error	T-ratio	Approx. d.f.	P-value
For INTRCPT1, B0					
INTRCPT2, G00	13.493279	0.218255	61.824	157	0.000
SECTOR, G01	1.179093	0.395065	2.985	157	0.004
MEANSES, G02	4.257586	0.500135	8.513	157	0.000
For MINORITY slope, B1					
INTRCPT2, G10	-3.800761	0.329691	-11.528	157	0.000
SECTOR, G11	1.859578	0.462451	4.021	157	0.000
MEANSES, G12	-0.742032	0.490089	-1.514	157	0.132
For FEMALE slope, B2					
INTRCPT2, G20	-1.269669	0.219399	-5.787	157	0.000
SECTOR, G21	0.017264	0.398333	0.043	157	0.966
MEANSES, G22	-0.008239	0.435061	-0.019	157	0.985
For SES slope, B3					
INTRCPT2, G30	2.478999	0.144731	17.128	7173	0.000
SECTOR, G31	-1.311409	0.232813	-5.633	7173	0.000
MEANSES, G32	0.995932	0.315195	3.160	7173	0.002
Final estimation of variance components:					
Random Effect	Standard Deviation	Variance Component	df	Chi-square	P-value
INTRCPT1, U0	1.58295	2.50575	97	200.38556	0.000
MINORITY slope, U1	0.99053	0.98114	97	112.50013	0.135
FEMALE slope, U2	0.92975	0.86444	97	125.27254	0.028
level-1, \quad R	5.94426	35.33424			

Note: The chi-square statistics reported above are based on only 100 of 160 units that had sufficient data for computation. Fixed effects and variance components are based on all the data.

Statistics for current covariance components model

Deviance $\quad=46223.669899$
Number of estimated parameters = 19
Test of homogeneity of level-1 variance
--
Chi-square statistic $=108.42203$
Number of degrees of freedom $=99$
P -value $=0.243$

We no longer detect significant homogeneity using this test. Note that now only 100 out of 160 schools are used for calculating the reliability estimates and the chi-square statistics for variance components - that's because for some schools, we do not have sufficient numbers of boys and girls to reliably calculate the gender slope.

But, if we once again explore if level 1 variance can be explained by our level 1 predictors, we will still observe some relationships:

```
RESULTS FOR HETEROGENEOUS SIGMA-SQUARED
(macro iteration 4)
Var(R) = Sigma_squared and
log(Sigma_squareqed) = alpha0 + alpha1(MINORITY) + alpha2(FEMALE) + alpha3(SES)
Model for level-1 variance
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Parameter} & Coefficient & \begin{tabular}{l}
Standard \\
Error
\end{tabular} & Z-ratio & P-value \\
\hline INTRCPT1 & , alpha0 & 3.65317 & 0.026946 & 135.572 & 0.000 \\
\hline MINORITY & , alpha1 & -0.13144 & 0.038616 & -3.404 & 0.001 \\
\hline FEMALE & , alpha2 & -0.10502 & 0.034193 & -3.071 & 0.003 \\
\hline SES & , alpha3 & -0.00702 & 0.026020 & -0.270 & 0.787 \\
\hline
\end{tabular}
Summary of Model Fit
\begin{tabular}{|c|c|c|}
\hline Model & Number of Parameters & Deviance \\
\hline 1. Homogeneous sigma_squared & 19 & 46223.67031 \\
\hline 2. Heterogeneous sigma_squared & 22 & 46203.21463 \\
\hline Model Comparison & Chi-square & df P-value \\
\hline Model 1 vs Model 2 & 20.45568 & 30.000 \\
\hline
\end{tabular}
```

So we observe less unexplained variance among girls and minorities. We might want to explore what explains the higher variance among boys and whites (e.g., we could consider an interaction term of SES with gender and minority status variables - we'd have to create it outside of HLM). If you find a heteroscedasticity problem or a distributional problem (i.e., non-normality) but cannot correct it, you can rely on robust standard errors.

HLM produces two final tables of fixed effects: one with regular standard errors and one with robust standard errors. Robust standard errors are standard errors that are relatively insensitive to misspecification at the levels of the model and the distributional assumptions at each level. If the robust and model-based standard errors differ substantially, that suggests that you have some problem with normality, homoscedasticity, or linearity, and you should further investigate those HLM assumptions. If it is not possible to correct the problem, you can report robust standard errors.

Note, however, that the robust standard errors should be trusted only when the number of higherlevel units is moderately large relative to the number of explanatory variables at the higher level.

4. Normality

HLM models assume that the level-1 and level 2 error terms are normally distributed. To make sure this assumption will be met, it is important to do some preliminary data screening before importing data into HLM. It is especially important to ensure that your dependent variable distribution is as close to normal as possible, but independent variables should be checked as well. If substantial deviations from normality are identified, consider fixing them with a transformation. Note that when examining normality of level 2 variables, you should either have a separate level 2 file or you should limit your analysis to one record per higher level unit.

To do the latter, in Stata we could create a within-school id for individuals and then do our examination taking only the first case in each school:

```
. bysort id: gen case=_n
. histogram size if case==1
(bin=12, start=100, width=217.75)
```


Looks like a right skew; to find a transformation:
. ladder size if case==1

Transformation	formula	chi2(2)	P(chi2)
cubic	size^3	60.02	0.000
square	size^2	31.36	0.000
identity	size	8.37	0.015
square root	sqrt(size)	7.18	0.028
log	$\log ($ size)	16.55	0.000
1/(square root)	1/sqrt(size)	58.10	0.000
inverse	1/size		0.000
1/square	1/(size^2)		0.000
1/cubic	1/(size^3)		0.000

. gladder size if case==1

Histograms by transformation
size

Square root looks the best, so we would generate it and then later on import that transformed variable into HLM:
. gen sizesqrt=sqrt(size)
If a variable contains zero or negative values, you need to add a constant to it before looking for transformations (such that all values of the variable become larger than zero). For example:

- sum mathach

Variable	Obs	Mean	Std. Dev.	Min	Max
mathach	7185	12.74785	6.878246	-2.832	24.993

. ladder mathach if case==1

Transformation	formula	chi2(2)	P(chi2)
cubic	mathach^3	19.29	0.000
square	mathach^2	16.12	0.000
identity	mathach	18.12	0.000
square root	sqrt (mathach)	-	-
log	$\log (\mathrm{mathach})$	-	-
1/(square root)	1/sqrt (mathach)	-	-
inverse	1/mathach	49.83	0.000
1/square	1/(mathach^2)	.	0.000
1/cubic	1/(mathach^3)	-	0.000

. gen mathach1=mathach+3
. ladder mathach1 if case==1

Transformation	formula	chi2(2)	P(chi2)
cubic	mathach1^3	16.03	0.000
square	mathach1^2	18.22	0.000
identity	mathach1	18.12	0.000
square root	sqrt (mathach1)	11.27	0.004
log	$\log ($ mathach1)	.	0.000
1/(square root)	1/sqrt(mathach1)	-	0.000
inverse	1/mathach1	-	0.000
1/square	1/(mathach1^2)		0.000
1/cubic	1/(mathach1^3)	.	0.000

. gladder mathach1 if case==1

If your sample size is large, everything will be significantly different from normal, so you should either rely on graphical examination (gladder) or randomly select a subsample of your dataset and do this type of analysis for that subsample.

If as variable is negatively skewed, you might have an easier time finding a transformation for it after reversing it. To reverse the variable and yet keep all the values positive, you can subtract it from its maximum value +1 ; for example:

```
. sum mathach
```


. gen mathachr=24.993+1-mathach

- sum mathachr

Variable	Obs	Mean	Std. Dev.	Min	Max
mathachr	7185	24515	6.878246	999	82

As you are examining normality, pay attention to outliers as well - sometimes, it is useful to topcode or bottom-code outliers in addition to or instead of transforming a variable.

	ses			
	Percentiles	Smallest		
1\%	-1.848	-3.758		
5\%	-1.318	-2.838		
10\%	-1.038	-2.508	Obs	7185
25\%	-. 538	-2.508	Sum of Wgt.	7185
50\%	. 002		Mean	. 0001434
		Largest	Std. Dev.	. 7793552
75\%	. 602	1.732		
90\%	1.022	1.762	Variance	. 6073945
95\%	1.212	1.832	Skewness	-. 2281447
99\%	1.512	2.692	Kurtosis	2.620279

```
. gen ses1=ses
. replace ses1=1.9 if ses>1.9 & ses<.
(1 real change made)
. replace sesl=-2.9 if ses<-2.9
(1 real change made)
```

Never top-code or bottom-code more than 5% of the distribution; better yet, do 1% or less. Sometimes transformation might be a better way to bring in outliers so consider both options or a combination of them.

If you do a good job dealing with normality problems and with outliers during preliminary screening, you should not run into problems with multivariate normality. Still, we need to check both level 1 and level 2 residuals for normality. Let's estimate a model, obtain residuals, and inspect them:

INTRCPT2, G20	2.884798	0.145874	19.776	157	0.000
SECTOR, G21	-1.605447	0.234757	-6.839	157	0.000
MEANSES, G22	1.043186	0.328828	3.172	157	0.002
Final estimation of variance components:					
Random Effect	Standard Deviation	Variance Component	df	Chi-square	P-value
INTRCPT1, U0	1.72298	2.96867	120	303.16423	0.000
FEMALE slope, U1	1.00971	1.01951	120	149.42515	0.035
SES slope, U2	0.35080	0.12306	120	122.48752	0.420
level-1, R	6.02785	36.33494			

To check the distribution of level 1 error term, we should obtain a level-1 residuals file by clicking on Basic Settings \rightarrow Level 1 residuals file, and then selecting the variables we want in that file and the type of output file we want (make sure the file extension corresponds to the type of file you selected -HLM does not automatically adjust that). I would advise to include all potentially interesting variables in that file, but you can also merge them later if you have person-level ID (in our case, we don't). Similarly, we obtain level-2 residuals as well.

We can now use the statistical software of our choice (e.g., Stata or SPSS) to check for normality of level-1 residuals. We can examine the distribution graphically as well as use formal statistical tests for normality.

We conclude that they look normal enough. Note that level 1 residuals file also contains predicted values - FITVAL-and predicted values of SIGMA (that is only relevant when we allow sigma to vary, as we did when we tried to model heterogeneity of variance above).

Next, let's test the multivariate normality of level 2 residuals. The level- 2 residual file contains a single record per group unit. The first variable in this file contains the unit ID, followed by the number of level-1 units within that level-2 unit (denoted by NJ), and various summary statistics (CHIPCT through MDRSVAR).

MDIST is the Mahalanobis distance measure (i.e., the standardized squared distance of a unit from the center of a multidimensional distribution) for each level 2 group that measures the distance between residual estimates for each group relative to the expected distance based on the model (MDIST variable). CHIPCT contains the expected values for that distance. After MDIST, there are three estimates of the level-1 variability:

- The natural logarithm of the total standard deviation within each unit, LNTOTVAR.
- The natural logarithm of the residual standard deviation within each unit based on its least squares regression, OLSRSVAR. Note that this estimate exists only for those units which have sufficient data to compute level-1 OLS estimates.
- The MSRSVAR, the natural logarithm of the residual standard deviation from the final fitted fixed effects model.

The most useful thing for us, however, is residuals themselves. Here, we get OL (Ordinary Least Squares) residuals - residuals based on separately fitting a regular OLS model for each group, as well as EB residuals (empirical Bayes residuals) that are based on so-called shrinkage estimates of individual schools' regression equations - these are based on both group-specific regression coefficients and the overall coefficients for the entire model. Since these estimates are a weighted average of those components, the regression coefficients for each group are essentially shrunk towards the overall coefficient for the whole sample. (See p. 29-31 in Hox book for a good explanation of EB estimators.)

When we graphed level one slopes for each group using HLM graphing functions, we were relying on such shrinkage estimates for each group. So if we are interested in assessing what a predicted slope would be for a given group, we could take the overall coefficient and add the corresponding EB residual for that group. Note that we get one OLS residual variable and one EB residual variable for each intercept or slope that we are modeling as random; here we have three random effects and three residuals variables.

We also get the fitted or predicted values (FV) of the level-1 coefficients based on estimated level- 2 models, and the EC coefficients, which are the sum of the fitted values plus the EB residuals. The posterior variances and covariances of the estimates of the intercept and the SES slopes are given next (PV00 to PVC10). Finally, the level-2 predictors used in the analysis plus those additional level-2 predictors that we requested for inclusion in the file are included.

We will most heavily utilize EB residuals. First, we can examine the normality of each set of residuals separately.
. We can examine normality for each of these:

```
. histogram EBINTRCPT1, normal
(bin=12, start=-4.0914528, width=.6652911)
. histogram EBFEMALE, normal
(bin=12, start=-1.3546074, width=.2191729)
. histogram EBSES, normal
(bin=12, start=-.44807637, width=.07564943)
```


Second, we can assess multivariate normality by examining Mahalanobis distance measure (MDIST variable). Note that the units in the residual file are sorted in ascending order by MDIST. Analogous to univariate normal probability plotting, we can construct a Q-Q plot of MDIST vs. CHIPCT. CHIPCT contains the expected values; if the Q-Q plot resembles a 45 degree line, we have evidence that the random effects are distributed multivariate normal. In addition, the plot will help us detect outlying units (units with large MDIST values well above the 45 degree line).

```
. scatter MDIST CHIPCT CHIPCT, s(. i) c(. l)
```


Here, we seem to have some model fit problem - all distance values are below the expected values, with one being above and much higher than others. We know that there is at least one a problem with the model - SES slope variance is not statistically significant, but we included it. If we fix that problem, the graph actually looks better:

If we want to examine which school has the highest MDIST:

5. Linearity

Before you get your data into HLM, it's also a good idea to examine the relationship of each independent variable to the dependent to assess its linearity. A good tool for such an examination is a lowess plot (called LOESS in SPSS) - that is, a scatterplot with locally weighted regression line (based on means or medians) going through it:

We can change bandwidth to make the curve less smooth (decrease the number) or smoother (increase the number):

We can also add a regression line to see the difference better:

You can do an approximate test for multivariate linearity (based on OLS); in Stata, we could install a user-written mrunning program:

```
- search mrunning
Keyword search
    Keywords: mrunning
        Search: (1) Official help files, FAQs, Examples, SJs, and STBs
Search of official help files, FAQs, Examples, SJs, and STBS
SJ-5-3 gr0017 . . . . . . . . . . . . . A multivariable scatterplot smoother
    (help mrunning, running if installed) . . . . P. Royston and N. J. Cox
    Q3/05 SJ 5(3):405-4412
    presents an extension to running for use in a
    multivariable context
```

Click on gr0017 to install the program. Now we can use it:
. mrunning mathach ses female sector meanses size

If the relationship looks nonlinear on lowess plot, consider using transformations to fix it before importing data into HLM. (Note that if the relationship is too complex, sometimes we may choose to break up the corresponding independent variable into a series of dummies instead.)

Monotone nonlinear relationship: Power transformations can be used to linearize relationships if strong monotone nonlinearities are found. The following chart gives suggestions for transformations when the curve looks a certain way:

Nonmonotone relationship: For non-monotone relationships (e.g. parabola or cubic), use polynomial functions of the variable, e.g. ses and ses squared, etc. Note that when including variables that are generated using other variables already in the model (as in this case, or when we want to enter a product of two variables to model an interaction term), we should meancenter the variable outside of HLM (only if it is continuous; don't mean-center dichotomous variables!), and then square and/or cube the mean-centered variable. We will then include the mean-centered variable itself and its transformations into our HLM file and our models. For example, if we are dealing with a second level variable, we would get its mean across 160 level 2 cases by restricting the calculation to one case per level 2 unit:

• sum size if case==1				
Variable \|	Obs	Mean	Std. Dev.	Min

```
. gen sizem=size-r(mean)
```

- gen sizem2=sizem^2

Oftentimes, the same transformation that helps with normality also will improve linearity, but that it is not always the case. Overall, linearity is more important to enforce than normality for a given variable, so if you end up with incompatible transformations, opt for the one improving linearity.

Once we estimated our HLM model and obtained residuals, we can inspect them to further assess linearity. First, we can assess the overall pattern by plotting level 1 residuals against predicted values; there should be no discernable pattern:

This does not look too good; indicates potential heteroscedasticity or nonlinearity problems.
To test the linearity assumption for continuous predictors, it is useful to plot residuals against each of the continuous dependent variable. To improve our ability to detect a curvilinear relationship, we will include a smoother in our plot using lowess command in Stata (in SPSS, you have to edit your plot to get a LOESS smoother).

In level 1 file:
. lowess L1RESID SES

Looks more or less fine, but we do see those outliers we discussed above.

In level 2 file:

```
. lowess EBINTRCPT1 MEANSES
. lowess EBFEMALE MEANSES
- lowess EBSES MEANSES
```


Based on these graphs, we could consider modeling nonlinear relationships with MEANSES (e.g. cubic).

We can also use such plots to search for potential other relationships and examine their shape, e.g. with PRACAD:

Based on graphs for MEANSES, looks like we need a quadratic and cubic term; let's try that. First, create them in Stata:
. use "C:\Users\sarkisin\hsb.dta", clear

. gen meansesm=meanses-r (mean)
. gen meanses2=meansesm^2

- gen meanses3=meansesm^3
. save "C:\Users\sarkisin\hsb_n.dta"
Next, we import these data with new level 2 variables into MDM and run the following model:

Summary of the model specified

Level-1 Model

$$
\text { MATHACH }_{i j}=\beta_{0 j}+\beta_{l j} *\left(F E M A L E_{i j}\right)+\beta_{2 j} *\left(S E S_{i j}\right)+r_{i j}
$$

Level-2 Model

$$
\begin{aligned}
& \beta_{0 j}=\gamma_{00}+\gamma_{01} *\left(\text { SECTOR }_{j}\right)+\gamma_{02} *\left(\text { MEANSESM }_{j}\right)+\gamma_{03} *\left(\text { MEANSESA }_{j}\right)+\gamma_{04} *\left(\text { MEANSESSAS }_{j}\right)+u_{0 j} \\
& \beta_{1 j}=\gamma_{10}+\gamma_{11} *\left(\text { SECTOR R }_{j}\right)+\gamma_{12} *\left(\text { MEANSESM }_{j}\right)+\gamma_{13} *\left(\text { MEANSES }_{j}\right)+\gamma_{14} *\left(\text { MEANSES3 }_{j}\right)+u_{1 j} \\
& \beta_{2 j}=\gamma_{20}+\gamma_{21} *\left(\text { SECTOR }_{j}\right)+\gamma_{22} *\left(\text { MEANSESM }_{j}\right)+\gamma_{23} *\left(\text { MEANSES }_{j}\right)+\gamma_{24} *\left(\text { MEANSES }_{j}\right)+u_{2 j}
\end{aligned}
$$

```
Mixed Model
    MATHACH \(_{i j}=\gamma_{00}+\gamma_{01} *\) SECTOR \(_{j}+\gamma_{02} *\) MEANSESM \(_{j}+\gamma_{03}{ }^{*}\) MEANSES \(_{j}\)
    \(+\gamma_{04}{ }^{*}\) MEANSES3 \(_{j}\)
    \(+\gamma_{10}{ }^{*}\) FEMALE \(_{i j}+\gamma_{11} *\) SECTOR \(_{j} *\) FEMALE \(_{i j}+\gamma_{12} *\) MEANSESM \(_{j} * F E M A L E_{i j}+\gamma_{13} *\) MEANSES 2
\({ }_{j}{ }^{*} F E M A L E_{i j}\)
    \(+\gamma_{14} *\) MEANSES3 \(_{j} *\) FEMALE \(_{i j}\)
    \(+\gamma_{20} *\) SES \(_{i j}+\gamma_{21} *\) SECTOR \(_{j} *\) SES \(_{i j}+\gamma_{22} *\) MEANSESM \(_{j} *\) SES \(_{i j}+\gamma_{23} *\) MEANSES \(_{j} *\) SES \(_{i j}\)
    \(+\gamma_{24}{ }^{*}\) MEANSES3 \(_{j}{ }^{*}\) SES \(_{i j}\)
    \(+u_{0 j}+u_{l j} * F E M A L E_{i j}+u_{2 j} * S E S_{i j}+r_{i j}\)
```


Final Results - Iteration 196

Iterations stopped due to small change in likelihood function
$\sigma^{2}=36.33164$

τ

INTRCPT1, β_{0}	2.89652	-1.10566	0.15643
FEMALE, β_{1}	-1.10566	1.07071	-0.10789
SES, β_{2}	0.15643	-0.10789	0.03481

τ (as correlations)

INTRCPT $1, \beta_{0}$	1.000	-0.628	0.493
FEMALE, β_{1}	-0.628	1.000	-0.559
SES, β_{2}	0.493	-0.559	1.000

Random level-1 coefficient	Reliability estimate
INTRCPT1, β_{0}	0.562
FEMALE, β_{1}	0.226
SES,β_{2}	0.018

Note: The reliability estimates reported above are based on only 123 of 160 units that had sufficient data for computation. Fixed effects and variance components are based on all the data.
The value of the log-likelihood function at iteration $196=-2.321064 \mathrm{E}+004$
Final estimation of fixed effects:

Fixed Effect	Coefficient	Standard error	t-ratio	Approx. d.f.	p-value
For INTRCPT1, β_{0}					
INTRCPT2, γ_{00}	12.907247	0.279465	46.186	155	<0.001
SECTOR, γ_{01}	1.283642	0.404468	3.174	155	0.002
MEANSESM, γ_{02}	1.797330	0.817768	2.198	155	0.029
MEANSES2, γ_{03}	-0.951531	1.120816	-0.849	155	0.397
MEANSES3, γ_{04}	3.836587	1.690063	2.270	155	0.025
For FEMALE slope, β_{1}					
INTRCPT2, γ_{10}	-1.233096	0.280534	-4.396	155	<0.001
SECTOR, γ_{11}	-0.001974	0.428020	-0.005	155	0.996
MEANSESM, γ_{12}	0.799645	0.824353	0.970	155	0.334
MEANSES2, γ_{13}	-0.111261	1.131924	-0.098	155	0.922
MEANSES3, γ_{14}	-1.773548	1.617949	-1.096	155	0.275
For SES slope, β_{2}					
INTRCPT2, γ_{20}	3.054068	0.168069	18.172	155	<0.001
SECTOR, γ_{21}	-1.448019	0.228292	-6.343	155	<0.001
MEANSESM, γ_{22}	0.436659	0.458282	0.953	155	0.342
MEANSES2, γ_{23}	-1.423832	0.651288	-2.186	155	0.030
MEANSES3, γ_{24}	0.830308	0.944632	0.879	155	0.381

Final estimation of fixed effects (with robust standard errors)

Fixed Effect	Coefficient	Standard error	t-ratio	Approx. d.f.	p-value
For INTRCPT1, β_{0}					
INTRCPT2, γ_{00}	12.907247	0.247259	52.201	155	<0.001
SECTOR, γ_{01}	1.283642	0.405022	3.169	155	0.002
MEANSESM, γ_{02}	1.797330	0.764002	2.353	155	0.020

MEANSES2, γ_{03}	-0.951531	1.018663	-0.934	155	0.352
MEANSES3, γ_{04}	3.836587	1.262893	3.038	155	0.003
For FEMALE slope, β_{1}					
INTRCPT2, γ_{10}	-1.233096	0.263774	-4.675	155	<0.001
SECTOR, γ_{11}	-0.001974	0.415286	-0.005	155	0.996
MEANSESM, γ_{12}	0.799645	0.745535	1.073	155	0.285
MEANSES2, γ_{13}	-0.111261	0.877522	-0.127	155	0.899
MEANSES3, γ_{14}	-1.773548	1.238739	-1.432	155	0.154
For SES slope, β_{2}					
INTRCPT2, γ_{20}	3.054068	0.142724	21.398	155	<0.001
SECTOR, γ_{21}	-1.448019	0.222484	-6.508	155	<0.001
MEANSESM, γ_{22}	0.436659	0.455257	0.959	155	0.339
MEANSES2, γ_{23}	-1.423832	0.570011	-2.498	155	0.014
MEANSES3, γ_{24}	0.830308	0.782073	1.062	155	0.290

Final estimation of variance components

Random Effect	Standard Deviation	Variance Component	$d . f$.	χ^{2}	p-value
INTRCPT1, u_{0}	1.70192	2.89652	118	294.11109	<0.001
FEMALE slope, u_{1}	1.03475	1.07071	118	147.36019	0.035
SES slope, u_{2}	0.18658	0.03481	118	115.27717	>0.500
level-1, r	6.02757	36.33164			

Note: The chi-square statistics reported above are based on only 123 of 160 units that had sufficient data for computation. Fixed effects and variance components are based on all the data.

Statistics for current covariance components model

Deviance $=46421.274684$
Number of estimated parameters $=7$
It looks like there is a bunch of non-significant coefficients that we could omit; let's do a hypothesis test:

Results of General Linear Hypothesis Testing - Test 1

Coefficients									Contrast			
For INTRCPT1, β_{0}												
INTRCPT2, γ_{00}	12.907247	0.0000	0.0000	0.0000	0.0000	0.0000						
SECTOR, γ_{01}	1.283642	0.0000	0.0000	0.0000	0.0000	0.0000						
MEANSESM, γ_{02}	1.797330	0.0000	0.0000	0.0000	0.0000	0.0000						
MEANSES2, γ_{03}	-0.951531	0.0000	0.0000	0.0000	0.0000	0.0000						
MEANSES3, γ_{04}	3.836587	0.0000	0.0000	0.0000	0.0000	0.0000						
For FEMALE slope, β_{1}												
INTRCPT2, γ_{10}	-1.233096	0.0000	0.0000	0.0000	0.0000	0.0000						
SECTOR, γ_{11}	-0.001974	1.0000	0.0000	0.0000	0.0000	0.0000						

MEANSESM, γ_{12}	0.799645	0.0000	1.0000	0.0000	0.0000	0.0000
MEANSES2, γ_{13}	-0.111261	0.0000	0.0000	1.0000	0.0000	0.0000
MEANSES3, γ_{14}	-1.773548	0.0000	0.0000	0.0000	1.0000	0.0000
For SES slope, β_{2}						
INTRCPT2, γ_{20}	3.054068	0.0000	0.0000	0.0000	0.0000	0.0000
SECTOR, γ_{21}	-1.448019	0.0000	0.0000	0.0000	0.0000	0.0000
MEANSESM, γ_{22}	0.436659	0.0000	0.0000	0.0000	0.0000	0.0000
MEANSES2, γ_{23}	-1.423832	0.0000	0.0000	0.0000	0.0000	0.0000
MEANSES3, γ_{24}	0.830308	0.0000	0.0000	0.0000	0.0000	1.0000
Estimate		-0.0020	0.7996	-0.1113	-1.7735	0.8303
Standard error of estimate		0.4153	0.7455	0.8775	1.2387	0.7821

$$
\begin{aligned}
& \chi^{2} \text { statistic }=5.187475 \\
& \text { Degrees of freedom }=5 \\
& p \text {-value }=0.393820
\end{aligned}
$$

We can safely omit these, as well as fix SES variance. Here's the resulting final model:

Summary of the model specified

Level-1 Model

$$
\text { MATHACH }_{i j}=\beta_{0 j}+\beta_{l j} *\left(F E M A L E_{i j}\right)+\beta_{2 j} *\left(S E S_{i j}\right)+r_{i j}
$$

Level-2 Model

$$
\begin{aligned}
& \beta_{0 j}=\gamma_{00}+\gamma_{01} *\left(\text { SECTOR }_{j}\right)+\gamma_{02} *\left(\text { MEANSESM }_{j}\right)+\gamma_{03} *\left(\text { MEANSES }_{j}\right)+\gamma_{04} *\left(\text { MEANSES3 }_{j}\right)+u_{0 j} \\
& \beta_{l j}=\gamma_{10}+u_{l j} \\
& \beta_{2 j}=\gamma_{20}+\gamma_{21} *\left(\text { SECTOR }_{j}\right)+\gamma_{22} *\left(\text { MEANSESM }_{j}\right)+\gamma_{23} *\left(\text { MEANSES }_{j}\right)
\end{aligned}
$$

Mixed Model

$$
\begin{aligned}
& \text { MATHACH }_{i j}=\gamma_{00}+\gamma_{01} * \text { SECTOR }_{j}+\gamma_{02} * \text { MEANSESM }_{j}+\gamma_{03} * \text { MEANSES }_{j} \\
& +\gamma_{04} * \text { MEANSES3 }_{j} \\
& +\gamma_{10} * F E M A L E_{i j} \\
& +\gamma_{20} * \text { SES }_{i j}+\gamma_{21} * \text { SECTOR }_{j} * \text { SES }_{i j}+\gamma_{22} * \text { MEANSESM }_{j} * \text { SES }_{i j}+\gamma_{23} * \text { MEANSES }_{j} * \text { SES }_{i j} \\
& +u_{0 j}+u_{1 j} * F E M A L E_{i j}+r_{i j}
\end{aligned}
$$

Final Results - Iteration 41

Iterations stopped due to small change in likelihood function

```
\sigma}=36.3504
\tau
INTRCPT1, }\mp@subsup{\beta}{0}{}\quad2.86530-1.0621
FEMALE, }\mp@subsup{\beta}{1}{}\quad-1.06216 0.98579 
\tau (as correlations)
INTRCPT1, }\mp@subsup{\beta}{0}{
FEMALE, }\mp@subsup{\beta}{1}{}\quad-0.632 1.00
```

Random level-1 coefficient	Reliability estimate
INTRCPT1, β_{0}	0.597
FEMALE, $\boldsymbol{\beta}_{1}$	0.216

Note: The reliability estimates reported above are based on only 123 of 160 units that had sufficient data for computation. Fixed effects and variance components are based on all the data.
The value of the log-likelihood function at iteration $41=-2.321437 \mathrm{E}+004$
Final estimation of fixed effects:

Fixed Effect	Coefficient	Standard error	t-ratio	Approx. d.f.	p-value
For INTRCPT1, β_{0}					
INTRCPT2, γ_{00}	12.860968	0.241018	53.361	155	<0.001
SECTOR, γ_{01}	1.267077	0.290825	4.357	155	<0.001
MEANSESM, γ_{02}	2.454522	0.593980	4.132	155	<0.001
MEANSES2, γ_{03}	-0.807528	0.813216	-0.993	155	0.322
MEANSES3, γ_{04}	2.438583	1.275980	1.911	155	0.058
For FEMALE slope, β_{1}					
INTRCPT2, γ_{10}	-1.210167	0.181840	-6.655	159	<0.001
For SES slope, β_{2}					
INTRCPT2, γ_{20}	3.083014	0.163651	18.839	6861	<0.001
SECTOR, γ_{21}	-1.442005	0.225767	-6.387	6861	<0.001
MEANSESM, γ_{22}	0.734397	0.304820	2.409	6861	0.016
MEANSES2, γ_{23}	-1.715493	0.572301	-2.998	6861	0.003

Final estimation of fixed effects (with robust standard errors)

Fixed Effect	Coefficient	Standard error	t-ratio	Approx. d.f.	p-value
For INTRCPT1, β_{0}					
INTRCPT2, γ_{00}	12.860968	0.220636	58.290	155	<0.001
SECTOR, γ_{01}	1.267077	0.305094	4.153	155	<0.001
MEANSESM, γ_{02}	2.454522	0.549808	4.464	155	<0.001

MEANSES2, γ_{03}	-0.807528	0.761298	-1.061	155	0.290
MEANSES3, γ_{04}	2.438583	0.957991	2.546	155	0.012
For FEMALE slope, β_{1}					
INTRCPT2, γ_{10}	-1.210167	0.180657	-6.699	159	<0.001
For SES slope, β_{2}					
INTRCPT2, γ_{20}	3.083014	0.146072	21.106	6861	<0.001
SECTOR, γ_{21}	-1.442005	0.222935	-6.468	6861	<0.001
MEANSESM, γ_{22}	0.734397	0.320445	2.292	6861	0.022
MEANSES2, γ_{23}	-1.715493	0.489462	-3.505	6861	<0.001

Final estimation of variance components

Random Effect	Standard Deviation	Variance Component	d.f.	χ^{2}	p-value
INTRCPT1, u_{0}	1.69272	2.86530	118	292.16127	<0.001
FEMALE slope, u_{1}	0.99287	0.98579	122	152.94966	0.030
level-1, r	6.02914	36.35048			

Note: The chi-square statistics reported above are based on only 123 of 160 units that had sufficient data for computation. Fixed effects and variance components are based on all the data.

Statistics for current covariance components model
Deviance $=46428.732167$
Number of estimated parameters $=4$
Generating graphs based on that in Stata:

```
. gen pred1=12.860968+1.267077*0 + 2.454522*meansesm -0.807528*meanses2 +
2.438583*meanses3 -1.210167*0 + 3.083014*ses -1.442005*0*ses +
0.734397*meansesm*ses -1.715493*meanses2*ses
. sum ses, det
\begin{tabular}{|c|c|c|c|c|}
\hline & Percentiles & Smallest & & \\
\hline 1\% & -1.848 & -3.758 & & \\
\hline 5\% & -1.318 & -2.838 & & \\
\hline 10\% & -1.038 & -2.508 & Obs & 7185 \\
\hline 25\% & -. 538 & -2.508 & Sum of Wgt. & 7185 \\
\hline 50\% & . 002 & & Mean & . 0001434 \\
\hline & & Largest & Std. Dev. & . 7793552 \\
\hline 75\% & . 602 & 1.732 & & \\
\hline 90\% & 1.022 & 1.762 & Variance & . 6073945 \\
\hline 95\% & 1.212 & 1.832 & Skewness & -. 2281447 \\
\hline 99\% & 1.512 & 2.692 & Kurtosis & 2.620279 \\
\hline
\end{tabular}
```

. graph twoway (line predl meanses if ses<.01 \& ses>-.01, sort lcolor(red)) (line pred1 meanses if ses $<.603$ \& ses>. 601, sort lcolor(green)) (line pred1 meanses if ses<-. 537 \& ses>-.539, sort lcolor(blue)), legend(label(1 "Median SES") label(2 "75th percentile SES") label(3 "25th percentile SES")) ytitle(Predicted math achievement) xtitle(Mean SES of School)

- sum meanses, det
meanses

	Percentiles	Smallest		
1\%	-1.043	-1.188		
5\%	-. 696	-1.188		
10\%	-. 579	-1.188	Obs	7185
25\%	-. 317	-1.188	Sum of Wgt.	7185
50\%	. 038		Mean	. 0061385
		Largest	Std. Dev.	. 4135539
75\%	. 333	. 831		
90\%	. 523	. 831	Variance	. 1710268
95\%	. 661	. 831	Skewness	-. 2681775
99\%	. 759	. 831	Kurtosis	2.520962
. graph twoway (line pred1 ses if meanses<.04 \& meanses>.03, sort lcolor(red)) (line pred1 ses if meanses<. 34 \& meanses>.32, sort lcolor(green)) (line pred1 ses if meanses<-. 316 \& meanses>-. 318, sort lcolor (blue)), legend(label(1 "Median School SES") label(2 "75th percentile School SES") label(3 "25th percentile School SES")) ytitle(Predicted math achievement) xtitle(Individual SES)				

Graphs in HLM

Using graphs to examine the data

HLM has some limited graphing capabilities allowing you to examine the data before starting to build models. You can examine your data by creating boxplots for a variable, e.g., your dependent variable, by group - to see group differences and group-level outliers. You can also mark these groups according to one level-2 variable:

You can also create a scatterplot for the whole sample by values of a level-2 variable:

Or you can create scatterplots separating groups and colorcoding them by a level-2 variable:

Graphing Equations

Graphs can also be used to better illustrate and understand the models you estimate-but if you have complexity like in the model we just did (with squared and cubed terms), the graphs can produce strange results; Stata is more reliable. But for simpler models, rhese can greatly assist in interpreting the findings. E.g. for a model with SES and SECTOR:

Summary of the model specified

Level-1 Model

$$
M A T H A C H_{i j}=\beta_{0 j}+\beta_{l j} *\left(S E S_{i j}\right)+r_{i j}
$$

Level-2 Model

$$
\begin{aligned}
& \beta_{0 j}=\gamma_{00}+\gamma_{01} *\left(\text { SECTOR }_{j}\right)+u_{0 j} \\
& \beta_{l j}=\gamma_{10}+\gamma_{11} *\left(\text { SECTOR }_{j}\right)+u_{1 j}
\end{aligned}
$$

Mixed Model

$$
\begin{aligned}
& \text { MATHACH }_{i j}=\gamma_{00}+\gamma_{01} * S^{*} E C T O R_{i} \\
& +\gamma_{10} * S_{i j}+\gamma_{11} * S E C T O R_{j} * S_{i j} \\
& +u_{0 j}+u_{1 j} * S_{i j}+r_{i j}
\end{aligned}
$$

Final Results - Iteration 198
Iterations stopped due to small change in likelihood function

$$
\sigma^{2}=36.76311
$$

$$
\tau
$$

INTRCPT1, β_{0}	3.83295	0.54112
SES, β_{1}	0.54112	0.12988

τ (as correlations)		
INTRCPT1, β_{0}	1.000	0.767
SES, β_{1}	0.767	1.000

Random level-1 coefficient	Reliability estimate
INTRCPT1, β_{0}	0.759
SES,β_{1}	0.064

The value of the log-likelihood function at iteration $198=-2.328373 \mathrm{E}+004$
Final estimation of fixed effects:

Fixed Effect	Coefficient	Standard error	t-ratio	Approx. d.f.f.	p-value
For INTRCPT1, β_{0}					
INTRCPT2, γ_{00}	11.750237	0.232241	50.595	158	<0.001
SECTOR, γ_{01}	2.128611	0.346651	6.141	158	<0.001

For SES slope, β_{1}					
INTRCPT2, γ_{10}	2.958798	0.145460	20.341	158	<0.001
SECTOR, γ_{11}	-1.313096	0.219062	-5.994	158	<0.001

Final estimation of fixed effects
(with robust standard errors)

Fixed Effect	Coefficient	Standard error	t-ratio	Approx. d.f.f.	p-value
For INTRCPT1, β_{0}					
INTRCPT2, γ_{00}	11.750237	0.218675	53.734	158	<0.001
SECTOR, γ_{01}	2.128611	0.355697	5.984	158	<0.001
For SES slope, β_{1}					
INTRCPT2, γ_{10}	2.958798	0.144092	20.534	158	<0.001
SECTOR, γ_{11}	-1.313096	0.214271	-6.128	158	<0.001

Final estimation of variance components

Random Effect	Standard Deviation	Variance Component	d.f.	χ^{2}	p-value
INTRCPT1, u_{0}	1.95779	3.83295	158	756.04081	<0.001
SES slope, u_{1}	0.36039	0.12988	158	178.09113	0.131
level-1, r	6.06326	36.76311			

Statistics for current covariance components model

Deviance $=46567.464830$
Number of estimated parameters $=4$
Let's do Graph Equations \rightarrow Level 1 equation graphing. Here you can examine slopes for level1 variables across groups:

Or you can graph the relationships based on the fixed effects in your last model using Graph Equations \rightarrow Model graphs. Here, you have a range of options. For example, you can look at how level 1 slopes vary depending on values of level 2 variables (if you have a cross-level interaction in your model). You need to select a level-1 variable as you X, and level-2 variable as Z focus:

Or you can examine how predicted values vary by level of both level-1and level-2 variables by selecting level-2 variable as your X, and level-1 as your Z-focus:

