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SC708: Hierarchical Linear Modeling 

Instructor: Natasha Sarkisian 

Class notes: HLM Diagnostics 

 

Like OLS, HLM models rely on certain assumptions that have to be satisfied in order for 

regression coefficients to be unbiased and efficient estimates of the parameters of interest. 

Therefore, it is important to watch out for possible assumption violations and to take steps to 

prevent them. We will address the issues of model specification, homoscedasticity, normality of 

level 1 and level 2 residuals, and linearity.  

 

1. Model specification.  

 

In HLM models, the issue of model specification concerns two main questions: (1) Did we 

include the right fixed effects? (2) Did we include the right random components? As we 

discussed, when specifying your model, you should rely heavily on your theory as well as utilize 

hypothesis testing. But there are some additional steps you can take to prevent model 

misspecification. 

 

To prevent misspecification of fixed effects: 

 Consider including aggregates of level 1 variables. It is always possible that what appears 

to be an effect of a level 1 variable is, in reality, an effect of its level 2 aggregate. The 

only way to test is to introduce such an aggregate. So far, we discussed aggregates to the 

mean, but sometimes, it is also possible to use group-level standard deviations. For 

example, you can use MEANSES to indicate the average level of SES in the school and 

SESDEV (within-school standard deviation) to indicate how diverse each school is in 

terms of SES. Such diversity may have an impact above and beyond the impact of the 

average level.  

 Consider including level 2 predictors of level 1 slopes if you find significant variation in 

these slopes 

 If the proportion of explained variance (R-squared) is substantially reduced when you add 

a fixed effect, that can be a sign of misspecification. 

 Sometimes a fixed effect misspecification (e.g., a nonlinearity) can lead to a 

misspecification of the random effects (excluded curvilinear effect may show up as a 

significant variance component for the slope). We will return to the issue of linearity 

below. 

 

To prevent the misspecification problems in terms of random components: 

 Always test whether each of your level 1 slopes varies across level 2 units (i.e., try to 

estimate each slope as random). However, you have to be careful not to “overtax” your 

data.   

 The number of iterations can be diagnostic – if the data are highly informative, the 

algorithm will converge rapidly (e.g. in less than 10 iterations).  In contrast, if the model 

has an extensive number of random effects and the data are relatively sparse, hundreds of 

iterations may be needed.  In general, you should be cautious in specifying level-1 

coefficients as random – as the number of random effects grows, the number of 

variances/covariances to be estimated increases even faster (for m random predictors, 
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there are 1+m(m+1)/2 variance covariance components). As the number of random 

effects grows, significantly mode information is required to obtain reasonable estimates 

of variance/covariance components. The maximum depends on a number of factors: the 

magnitude of the variance components, the degree of intercorrelation among the random 

effects, the magnitude of sigma squared, and other characteristics of the data.   

 If there are high correlations among level-1 coefficients (i.e., slopes for different 

variables—correlations with the intercept are ok), the model must be simplified.  There 

are a number of ways of dealing with it.  You can, for example, use factor analysis to 

form scales and reduce the number of variables.  You can also constrain one or more 

random effects to be zero (i.e. keep only the fixed effect for that variable), thus 

eliminating the correlation.  This works well if that random effect is negligible.  

 

2. Multicollinearity 

 

Like regular OLS, HLM models can be affected by multicollinearity. There are no tools to check 

for it in HLM, so you should do some tests before you import your data into HLM. You should 

check correlations among your independent variables as well as variance inflation factors (VIFs) 

in another statistical program. E.g. in Stata: 
 

. pwcorr  mathach ses female meanses sector size 

 

             |  mathach      ses   female  meanses   sector     size 

-------------+------------------------------------------------------ 

     mathach |   1.0000  

         ses |   0.3608   1.0000  

      female |  -0.1231  -0.0679   1.0000  

     meanses |   0.3437   0.5306  -0.0589   1.0000  

      sector |   0.2040   0.1896   0.0065   0.3573   1.0000  

        size |  -0.0506  -0.0673  -0.0388  -0.1268  -0.4237   1.0000  

 

. reg  mathach ses female meanses sector size 

 

      Source |       SS       df       MS              Number of obs =    7185 

-------------+------------------------------           F(  5,  7179) =  315.35 

       Model |  61205.6611     5  12241.1322           Prob > F      =  0.0000 

    Residual |  278671.273  7179  38.8175614           R-squared     =  0.1801 

-------------+------------------------------           Adj R-squared =  0.1795 

       Total |  339876.934  7184  47.3102637           Root MSE      =  6.2304 

 

------------------------------------------------------------------------------ 

     mathach |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         ses |   2.148034   .1113801    19.29   0.000     1.929697    2.366372 

      female |  -1.321295   .1478042    -8.94   0.000    -1.611034   -1.031555 

     meanses |   2.889622   .2206451    13.10   0.000     2.457093    3.322151 

      sector |   1.503238   .1724585     8.72   0.000     1.165169    1.841308 

        size |   .0003457   .0001345     2.57   0.010     .0000821    .0006093 

       _cons |   12.32108   .2222729    55.43   0.000     11.88536     12.7568 

------------------------------------------------------------------------------ 

 

. vif 

 

    Variable |       VIF       1/VIF   

-------------+---------------------- 

     meanses |      1.54    0.648947 

         ses |      1.39    0.717093 

      sector |      1.38    0.726733 
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        size |      1.22    0.818586 

      female |      1.01    0.992362 

-------------+---------------------- 

    Mean VIF |      1.31 

 

Different researchers advocate for different cutoff points for VIF. Some say that if any one of 

VIF values is larger than 4, there are some multicollinearity problems associated with that 

variable. Others use cutoffs of 5 or even 10. 

 

It is also useful to check level 2 separately: 
 

. bysort id: egen mathachm=mean(mathach) 

 

. reg  mathach meanses sector size if case==1 

 

      Source |       SS       df       MS              Number of obs =     160 

-------------+------------------------------           F(  3,   156) =    8.30 

       Model |  1087.63418     3  362.544726           Prob > F      =  0.0000 

    Residual |  6814.85021   156  43.6849372           R-squared     =  0.1376 

-------------+------------------------------           Adj R-squared =  0.1210 

       Total |  7902.48439   159  49.7011597           Root MSE      =  6.6095 

 

------------------------------------------------------------------------------ 

     mathach |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     meanses |   4.994022   1.355516     3.68   0.000     2.316488    7.671556 

      sector |   2.201746   1.253382     1.76   0.081    -.2740427    4.677536 

        size |   .0002882    .000934     0.31   0.758    -.0015568    .0021331 

       _cons |    11.4176   1.455231     7.85   0.000     8.543103     14.2921 

------------------------------------------------------------------------------ 

 

. vif 

 

    Variable |       VIF       1/VIF   

-------------+---------------------- 

      sector |      1.38    0.726829 

        size |      1.22    0.819769 

     meanses |      1.15    0.871633 

-------------+---------------------- 

    Mean VIF |      1.25 

 

Once you have your data in HLM and run your models, you should also watch out for potential 

signs of multicollinearity (e.g., large coefficients in opposite directions, high standard errors).   

 

3. Homoscedasticity. 

 

In HLM, the level-1 error terms should have equal variance across level-2 units (the assumption 

of homoscedasticity or homogeneity of variance) – e.g., all schools should have variances equal 

to the other schools in the sample.  To test the homogeneity of variance assumption, under Other 

Settings Hypotheses testing, select “Test homogeneity of level-1 variance.” Then run the 

model.  The output looks like this: 

 
Summary of the model specified (in equation format) 

 --------------------------------------------------- 

 

Level-1 Model 
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 Y = B0 + B1*(SES) + R 

 

Level-2 Model 

 B0 = G00 + G01*(SECTOR) + G02*(MEANSES) + U0 

 B1 = G10 + G11*(SECTOR) + G12*(MEANSES)  

 

Iterations stopped due to small change in likelihood function 

 

******* ITERATION 6 ******* 

 

 Sigma_squared =     36.76611 

 

 Tau 

 INTRCPT1,B0      2.37524  

 

Tau (as correlations) 

 INTRCPT1,B0  1.000 

 ---------------------------------------------------- 

  Random level-1 coefficient   Reliability estimate 

 ---------------------------------------------------- 

  INTRCPT1, B0                        0.732 

 ---------------------------------------------------- 

The value of the likelihood function at iteration 6 = -2.325148E+004 

 

 The outcome variable is  MATHACH 

 

 Final estimation of fixed effects: 

 ---------------------------------------------------------------------------- 

                                       Standard             Approx. 

    Fixed Effect         Coefficient   Error      T-ratio   d.f.     P-value 

 ---------------------------------------------------------------------------- 

 For       INTRCPT1, B0 

    INTRCPT2, G00          12.095250   0.198627    60.894       157    0.000 

      SECTOR, G01           1.224401   0.306117     4.000       157    0.000 

     MEANSES, G02           5.336698   0.368978    14.463       157    0.000 

 For      SES slope, B1 

    INTRCPT2, G10           2.935664   0.150690    19.482      7179    0.000 

      SECTOR, G11          -1.642102   0.233097    -7.045      7179    0.000 

     MEANSES, G12           1.044120   0.291042     3.588      7179    0.001 

 ---------------------------------------------------------------------------- 

 

 The outcome variable is  MATHACH 

 

 Final estimation of fixed effects 

 (with robust standard errors) 

 ---------------------------------------------------------------------------- 

                                       Standard             Approx. 

    Fixed Effect         Coefficient   Error      T-ratio   d.f.     P-value 

 ---------------------------------------------------------------------------- 

 For       INTRCPT1, B0 

    INTRCPT2, G00          12.095250   0.173679    69.641       157    0.000 

      SECTOR, G01           1.224401   0.308507     3.969       157    0.000 

     MEANSES, G02           5.336698   0.334617    15.949       157    0.000 

 For      SES slope, B1 

    INTRCPT2, G10           2.935664   0.147576    19.893      7179    0.000 

      SECTOR, G11          -1.642102   0.237223    -6.922      7179    0.000 

     MEANSES, G12           1.044120   0.332897     3.136      7179    0.002 

 ---------------------------------------------------------------------------- 

 

 Final estimation of variance components: 

 ----------------------------------------------------------------------------- 

 Random Effect           Standard      Variance     df    Chi-square  P-value 

                         Deviation     Component 
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 ----------------------------------------------------------------------------- 

 INTRCPT1,       U0        1.54118       2.37524   157     604.29895    0.000 

  level-1,       R         6.06351      36.76611 

 ----------------------------------------------------------------------------- 

 

 Statistics for current covariance components model 

 -------------------------------------------------- 

 Deviance                       = 46502.952743 

 Number of estimated parameters = 2 

 

 Test of homogeneity of level-1 variance 

 ---------------------------------------- 

 Chi-square statistic         =    244.08638 

 Number of degrees of freedom =  159 

 P-value                      = 0.000 

 

This output indicates that for this model, the assumption was violated, so the variance is 

heterogeneous.  Note that this method relies on fitting separate OLS regressions in each of the 

groups, so there should be a substantial number of groups with a relatively large number of cases 

in each group in order for this test to be accurate. 

 

Heterogeneity of variance can be a nuisance, or it can be substantively interesting. When it is a 

nuisance, the causes can be: 

 One or more important level-1 predictors may have been omitted from the model. 

 The effects of a level-1 predictor that is random or nonrandomly varying have been 

erroneously treated as fixed. 

 Dependent variable is severely skewed. 

 One (or more) of the independent variables has a nonlinear relationship to the dependent 

variable that we failed to model correctly. 

 There are outliers or bad data. 

 

Let’s try and free the slope of SES: 

 
Test of homogeneity of level-1 variance 

 ---------------------------------------- 

 Chi-square statistic         =    245.76576 

 Number of degrees of freedom =  159 

 P-value                      = 0.000 

 

Still a problem.  We could consider examining issues of normality or linearity, but for now, let’s 

try to think about heterogeneity as substantively interesting and model it using level 1 predictors 

– to see whether there are some predictors that seem to explain differential level 1 variance: 

 
RESULTS FOR HETEROGENEOUS SIGMA-SQUARED 

(macro iteration 4) 

 

 Var(R) = Sigma_squared and 

 log(Sigma_squared) = alpha0 + alpha1(MINORITY) + alpha2(FEMALE) + alpha3(SES) 

 

 Model for level-1 variance 

 -------------------------------------------------------------------- 

                                      Standard 

    Parameter        Coefficient      Error       Z-ratio   P-value 

 -------------------------------------------------------------------- 

 INTRCPT1    ,alpha0     3.67952      0.026787    137.360     0.000 
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 MINORITY    ,alpha1    -0.04998      0.038205     -1.308     0.191 

   FEMALE    ,alpha2    -0.12185      0.033969     -3.587     0.001 

      SES    ,alpha3     0.00129      0.026087      0.050     0.961 

 -------------------------------------------------------------------- 

Summary of Model Fit 

 ------------------------------------------------------------------- 

 Model                                Number of         Deviance 

                                      Parameters 

 ------------------------------------------------------------------- 

 1. Homogeneous sigma_squared             10          46494.59261 

 2. Heterogeneous sigma_squared           13          46480.44853 

 ------------------------------------------------------------------- 

 Model Comparison                 Chi-square       df    P-value 

 ------------------------------------------------------------------- 

 Model 1 vs Model 2                  14.14407       3     0.003 

 
 Test of homogeneity of level-1 variance 

 ---------------------------------------- 

 Chi-square statistic         =    237.93937 

 Number of degrees of freedom =  159 

 P-value                      = 0.000 

 

Looks like gender explains some heterogeneity – there is lower amount of unexplained variance 

in math achievement among girls.  Further, heterogenous model has significantly lower deviance 

than the homogenous model. There is still some unexplained heterogeneity left, however.  Note 

that HLM does not allow us to model the residual variance using level 2 (school) characteristics; 

another multilevel analysis program, MLwiN, does.   

 

But so far, we did not have gender and minority variables in the model itself.  So let’s add them 

and see what happens.  Let’s try to add other level 1 predictors to the model: 

 

LEVEL 1 MODEL 

MATHACH
ij
  =  

0j
 + 

1j
(MINORITY

ij
) + 

2j
(FEMALE

ij
) + 

3j
(SES

ij
 - SES. j

) + rij

LEVEL 2 MODEL  

0j
  =  

00
 + 

01
(SECTOR

j
) + 

02
(MEANSES

j
 - MEANSES. ) + u0j

1j
  =  

10
 + 

11
(SECTOR

j
) + 

12
(MEANSES

j
 - MEANSES. ) + u1j

2j
  =  

20
 + 

21
(SECTOR

j
) + 

22
(MEANSES

j
 - MEANSES. ) + u2j

3j
  =  

30
 + 

31
(SECTOR

j
) + 

32
(MEANSES

j
 - MEANSES. )

 
 Sigma_squared =     35.33424 

 

 Standard Error of Sigma_squared =      0.60442 

 

 Tau 

 INTRCPT1,B0      2.50575      -0.11413      -1.15746  

 MINORITY,B1     -0.11413       0.98114       0.18246  

   FEMALE,B2     -1.15746       0.18246       0.86444  

 

 Standard Errors of Tau 

 INTRCPT1,B0      0.53220       0.50638       0.44703  

 MINORITY,B1      0.50638       0.71802       0.47533  

   FEMALE,B2      0.44703       0.47533       0.52350  

 

Tau (as correlations) 
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 INTRCPT1,B0  1.000 -0.073 -0.786 

 MINORITY,B1 -0.073  1.000  0.198 

   FEMALE,B2 -0.786  0.198  1.000 

 ---------------------------------------------------- 

 

  Random level-1 coefficient   Reliability estimate 

 ---------------------------------------------------- 

  INTRCPT1, B0                        0.504 

  MINORITY, B1                        0.121 

    FEMALE, B2                        0.195 

 ---------------------------------------------------- 

Note: The reliability estimates reported above are based on only 100 of 160 

units that had sufficient data for computation.  Fixed effects and variance 

components are based on all the data. 

 

The outcome variable is  MATHACH 

 Final estimation of fixed effects 

 (with robust standard errors) 

 ---------------------------------------------------------------------------- 

                                       Standard             Approx. 

    Fixed Effect         Coefficient   Error      T-ratio   d.f.     P-value 

 ---------------------------------------------------------------------------- 

 For       INTRCPT1, B0 

    INTRCPT2, G00          13.493279   0.218255    61.824       157    0.000 

      SECTOR, G01           1.179093   0.395065     2.985       157    0.004 

     MEANSES, G02           4.257586   0.500135     8.513       157    0.000 

 For MINORITY slope, B1 

    INTRCPT2, G10          -3.800761   0.329691   -11.528       157    0.000 

      SECTOR, G11           1.859578   0.462451     4.021       157    0.000 

     MEANSES, G12          -0.742032   0.490089    -1.514       157    0.132 

 For   FEMALE slope, B2 

    INTRCPT2, G20          -1.269669   0.219399    -5.787       157    0.000 

      SECTOR, G21           0.017264   0.398333     0.043       157    0.966 

     MEANSES, G22          -0.008239   0.435061    -0.019       157    0.985 

 For      SES slope, B3 

    INTRCPT2, G30           2.478999   0.144731    17.128      7173    0.000 

      SECTOR, G31          -1.311409   0.232813    -5.633      7173    0.000 

     MEANSES, G32           0.995932   0.315195     3.160      7173    0.002 

 ---------------------------------------------------------------------------- 

 Final estimation of variance components: 

 ----------------------------------------------------------------------------- 

 Random Effect           Standard      Variance     df    Chi-square  P-value 

                         Deviation     Component 

 ----------------------------------------------------------------------------- 

 INTRCPT1,       U0        1.58295       2.50575    97     200.38556    0.000 

 MINORITY slope, U1        0.99053       0.98114    97     112.50013    0.135 

   FEMALE slope, U2        0.92975       0.86444    97     125.27254    0.028 

  level-1,       R         5.94426      35.33424 

 ----------------------------------------------------------------------------- 

Note: The chi-square statistics reported above are based on only 100 of 160 

units that had sufficient data for computation.  Fixed effects and variance 

components are based on all the data. 

 

 Statistics for current covariance components model 

 -------------------------------------------------- 

 Deviance                       = 46223.669899 

 Number of estimated parameters = 19 

 

 Test of homogeneity of level-1 variance 

 ---------------------------------------- 

 Chi-square statistic         =    108.42203 

 Number of degrees of freedom =   99 

 P-value                      = 0.243 
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We no longer detect significant homogeneity using this test.  Note that now only 100 out of 160 

schools are used for calculating the reliability estimates and the chi-square statistics for variance 

components – that’s because for some schools, we do not have sufficient numbers of boys and 

girls to reliably calculate the gender slope.   

 

But, if we once again explore if level 1 variance can be explained by our level 1 predictors, we 

will still observe some relationships: 
 

RESULTS FOR HETEROGENEOUS SIGMA-SQUARED 

(macro iteration 4) 

 

 Var(R) = Sigma_squared and 

 log(Sigma_squared) = alpha0 + alpha1(MINORITY) + alpha2(FEMALE) + alpha3(SES) 

 

 Model for level-1 variance 

 -------------------------------------------------------------------- 

                                      Standard 

    Parameter        Coefficient      Error       Z-ratio   P-value 

 -------------------------------------------------------------------- 

 INTRCPT1    ,alpha0     3.65317      0.026946    135.572     0.000 

 MINORITY    ,alpha1    -0.13144      0.038616     -3.404     0.001 

   FEMALE    ,alpha2    -0.10502      0.034193     -3.071     0.003 

      SES    ,alpha3    -0.00702      0.026020     -0.270     0.787 

 -------------------------------------------------------------------- 

 

Summary of Model Fit 

 ------------------------------------------------------------------- 

 Model                                Number of         Deviance 

                                      Parameters 

 ------------------------------------------------------------------- 

 1. Homogeneous sigma_squared             19          46223.67031 

 2. Heterogeneous sigma_squared           22          46203.21463 

 ------------------------------------------------------------------- 

 Model Comparison                 Chi-square       df    P-value 

 ------------------------------------------------------------------- 

 Model 1 vs Model 2                  20.45568       3     0.000 

 

So we observe less unexplained variance among girls and minorities.  We might want to explore 

what explains the higher variance among boys and whites (e.g., we could consider an interaction 

term of SES with gender and minority status variables – we’d have to create it outside of HLM).  

If you find a heteroscedasticity problem or a distributional problem (i.e., non-normality) but 

cannot correct it, you can rely on robust standard errors.  

 

HLM produces two final tables of fixed effects: one with regular standard errors and one with 

robust standard errors. Robust standard errors are standard errors that are relatively insensitive to 

misspecification at the levels of the model and the distributional assumptions at each level. If the 

robust and model-based standard errors differ substantially, that suggests that you have some 

problem with normality, homoscedasticity, or linearity, and you should further investigate those 

HLM assumptions. If it is not possible to correct the problem, you can report robust standard 

errors.  

 

Note, however, that the robust standard errors should be trusted only when the number of higher-

level units is moderately large relative to the number of explanatory variables at the higher level.  
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4. Normality 

 

HLM models assume that the level-1 and level 2 error terms are normally distributed. To make 

sure this assumption will be met, it is important to do some preliminary data screening before 

importing data into HLM. It is especially important to ensure that your dependent variable 

distribution is as close to normal as possible, but independent variables should be checked as 

well. If substantial deviations from normality are identified, consider fixing them with a 

transformation. Note that when examining normality of level 2 variables, you should either have 

a separate level 2 file or you should limit your analysis to one record per higher level unit.  

 

To do the latter, in Stata we could create a within-school id for individuals and then do our 

examination taking only the first case in each school: 
 

. bysort id: gen case=_n 

 

. histogram size if case==1 

(bin=12, start=100, width=217.75) 
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Looks like a right skew; to find a transformation: 
. ladder size if case==1 

 

Transformation         formula               chi2(2)       P(chi2) 

------------------------------------------------------------------ 

cubic                  size^3                 60.02        0.000 

square                 size^2                 31.36        0.000 

identity               size                    8.37        0.015 

square root            sqrt(size)              7.18        0.028 

log                    log(size)              16.55        0.000 

1/(square root)        1/sqrt(size)           58.10        0.000 

inverse                1/size                     .        0.000 

1/square               1/(size^2)                 .        0.000 

1/cubic                1/(size^3)                 .        0.000 
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. gladder size if case==1 
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Square root looks the best, so we would generate it and then later on import that transformed 

variable into HLM: 

 
. gen sizesqrt=sqrt(size) 

 

If a variable contains zero or negative values, you need to add a constant to it before looking for 

transformations (such that all values of the variable become larger than zero). For example: 
 

. sum mathach 

 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

     mathach |      7185    12.74785    6.878246     -2.832     24.993 

 

. ladder mathach if case==1 

 

Transformation         formula               chi2(2)       P(chi2) 

------------------------------------------------------------------ 

cubic                  mathach^3              19.29        0.000 

square                 mathach^2              16.12        0.000 

identity               mathach                18.12        0.000 

square root            sqrt(mathach)              .            . 

log                    log(mathach)               .            . 

1/(square root)        1/sqrt(mathach)            .            . 

inverse                1/mathach              49.83        0.000 

1/square               1/(mathach^2)              .        0.000 

1/cubic                1/(mathach^3)              .        0.000 
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. gladder mathach if case==1 
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. gen mathach1=mathach+3 

 

. ladder mathach1 if case==1 

 

Transformation         formula               chi2(2)       P(chi2) 

------------------------------------------------------------------ 

cubic                  mathach1^3             16.03        0.000 

square                 mathach1^2             18.22        0.000 

identity               mathach1               18.12        0.000 

square root            sqrt(mathach1)         11.27        0.004 

log                    log(mathach1)              .        0.000 

1/(square root)        1/sqrt(mathach1)           .        0.000 

inverse                1/mathach1                 .        0.000 

1/square               1/(mathach1^2)             .        0.000 

1/cubic                1/(mathach1^3)             .        0.000 

 

. gladder mathach1 if case==1 
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If your sample size is large, everything will be significantly different from normal, so you should 

either rely on graphical examination (gladder) or randomly select a subsample of your dataset 

and do this type of analysis for that subsample.  

 



 12 

If as variable is negatively skewed, you might have an easier time finding a transformation for it 

after reversing it. To reverse the variable and yet keep all the values positive, you can subtract it 

from its maximum value +1; for example: 
 

. sum mathach 

 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

     mathach |      7185    12.74785    6.878246     -2.832     24.993 

 

. gen mathachr=24.993+1-mathach 

 

. sum mathachr 

 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

    mathachr |      7185    13.24515    6.878246   .9999999     28.825 

 

As you are examining normality, pay attention to outliers as well – sometimes, it is useful to top-

code or bottom-code outliers in addition to or instead of transforming a variable.  

 
. graph box ses 
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. sum ses, detail 

                             ses 

------------------------------------------------------------- 

      Percentiles      Smallest 

 1%       -1.848         -3.758 

 5%       -1.318         -2.838 

10%       -1.038         -2.508       Obs                7185 

25%        -.538         -2.508       Sum of Wgt.        7185 

 

50%         .002                      Mean           .0001434 

                        Largest       Std. Dev.      .7793552 

75%         .602          1.732 

90%        1.022          1.762       Variance       .6073945 

95%        1.212          1.832       Skewness      -.2281447 

99%        1.512          2.692       Kurtosis       2.620279 
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. gen ses1=ses 

 

. replace ses1=1.9 if ses>1.9 & ses<. 

(1 real change made) 

 

. replace ses1=-2.9 if ses<-2.9 

(1 real change made) 

 

Never top-code or bottom-code more than 5% of the distribution; better yet, do 1% or less. 

Sometimes transformation might be a better way to bring in outliers so consider both options or a 

combination of them. 

 

If you do a good job dealing with normality problems and with outliers during preliminary 

screening, you should not run into problems with multivariate normality. Still, we need to check 

both level 1 and level 2 residuals for normality. Let’s estimate a model, obtain residuals, and 

inspect them: 

 
  The model specified for the fixed effects was: 

 ---------------------------------------------------- 

   Level-1                  Level-2 

   Coefficients             Predictors 

 ----------------------   --------------- 

         INTRCPT1, B0      INTRCPT2, G00    

                             SECTOR, G01    

$                           MEANSES, G02    

     FEMALE slope, B1      INTRCPT2, G10    

                             SECTOR, G11    

$                           MEANSES, G12    

 *      SES slope, B2      INTRCPT2, G20    

                             SECTOR, G21    

$                           MEANSES, G22    

 

'*' - This level-1 predictor has been centered around its group mean. 

'$' - This level-2 predictor has been centered around its grand mean. 

 

Level-1 Model 

 Y = B0 + B1*(FEMALE) + B2*(SES) + R 

 

Level-2 Model 

 B0 = G00 + G01*(SECTOR) + G02*(MEANSES) + U0 

 B1 = G10 + G11*(SECTOR) + G12*(MEANSES) + U1 

 B2 = G20 + G21*(SECTOR) + G22*(MEANSES) + U2 

 

The outcome variable is  MATHACH 

 

 Final estimation of fixed effects 

 (with robust standard errors) 

 ---------------------------------------------------------------------------- 

                                       Standard             Approx. 

    Fixed Effect         Coefficient   Error      T-ratio   d.f.     P-value 

 ---------------------------------------------------------------------------- 

 For       INTRCPT1, B0 

    INTRCPT2, G00          12.728314   0.213807    59.532       157    0.000 

      SECTOR, G01           1.182789   0.393223     3.008       157    0.004 

     MEANSES, G02           5.206435   0.431487    12.066       157    0.000 

 For   FEMALE slope, B1 

    INTRCPT2, G10          -1.230407   0.221181    -5.563       157    0.000 

      SECTOR, G11           0.075948   0.414157     0.183       157    0.855 

     MEANSES, G12          -0.012379   0.419525    -0.030       157    0.977 

 For      SES slope, B2 
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    INTRCPT2, G20           2.884798   0.145874    19.776       157    0.000 

      SECTOR, G21          -1.605447   0.234757    -6.839       157    0.000 

     MEANSES, G22           1.043186   0.328828     3.172       157    0.002 

 ---------------------------------------------------------------------------- 

 

 Final estimation of variance components: 

 ----------------------------------------------------------------------------- 

 Random Effect           Standard      Variance     df    Chi-square  P-value 

                         Deviation     Component 

 ----------------------------------------------------------------------------- 

 INTRCPT1,       U0        1.72298       2.96867   120     303.16423    0.000 

   FEMALE slope, U1        1.00971       1.01951   120     149.42515    0.035 

      SES slope, U2        0.35080       0.12306   120     122.48752    0.420 

  level-1,       R         6.02785      36.33494 

 ----------------------------------------------------------------------------- 

 

To check the distribution of level 1 error term, we should obtain a level-1 residuals file by 

clicking on Basic Settings  Level 1 residuals file, and then selecting the variables we want in 

that file and the type of output file we want (make sure the file extension corresponds to the type 

of file you selected –HLM does not automatically adjust that).  I would advise to include all 

potentially interesting variables in that file, but you can also merge them later if you have 

person-level ID (in our case, we don’t).   Similarly, we obtain level-2 residuals as well. 

 

We can now use the statistical software of our choice (e.g., Stata or SPSS) to check for normality 

of level-1 residuals. We can examine the distribution graphically as well as use formal statistical 

tests for normality.  

 
. sktest  L1RESID 

                   Skewness/Kurtosis tests for Normality 

                                                 ------- joint ------ 

    Variable |  Pr(Skewness)   Pr(Kurtosis)  adj chi2(2)    Prob>chi2 

-------------+------------------------------------------------------- 

     L1RESID |      0.000         0.000               .       0.0000 

 

. histogram  L1RESID, normal 

(bin=38, start=-19.084782, width=.96868813) 
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. kdensity  L1RESID, normal 
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. qnorm  L1RESID 
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We conclude that they look normal enough. Note that level 1 residuals file also contains 

predicted values – FITVAL—and predicted values of SIGMA (that is only relevant when we 

allow sigma to vary, as we did when we tried to model heterogeneity of variance above).   

 

Next, let’s test the multivariate normality of level 2 residuals. The level-2 residual file contains a 

single record per group unit. The first variable in this file contains the unit ID, followed by the 

number of level-1 units within that level-2 unit (denoted by NJ), and various summary statistics 

(CHIPCT through MDRSVAR).  

 

MDIST is the Mahalanobis distance measure (i.e., the standardized squared distance of a unit 

from the center of a multidimensional distribution) for each level 2 group that measures the 

distance between residual estimates for each group relative to the expected distance based on the 

model (MDIST variable).  CHIPCT contains the expected values for that distance.   After MDIST, 

there are three estimates of the level-1 variability:  

 The natural logarithm of the total standard deviation within each unit, LNTOTVAR. 

 The natural logarithm of the residual standard deviation within each unit based on its 

least squares regression, OLSRSVAR. Note that this estimate exists only for those units 

which have sufficient data to compute level-1 OLS estimates.  

 The MSRSVAR, the natural logarithm of the residual standard deviation from the final 

fitted fixed effects model.  



 16 

The most useful thing for us, however, is residuals themselves. Here, we get OL (Ordinary Least 

Squares) residuals – residuals based on separately fitting a regular OLS model for each group, as 

well as EB residuals (empirical Bayes residuals) that are based on so-called shrinkage estimates 

of individual schools’ regression equations – these are based on both group-specific regression 

coefficients and the overall coefficients for the entire model. Since these estimates are a 

weighted average of those components, the regression coefficients for each group are essentially 

shrunk towards the overall coefficient for the whole sample. (See p. 29-31 in Hox book for a 

good explanation of EB estimators.) 

 

When we graphed level one slopes for each group using HLM graphing functions, we were 

relying on such shrinkage estimates for each group.  So if we are interested in assessing what a 

predicted slope would be for a given group, we could take the overall coefficient and add the 

corresponding EB residual for that group. Note that we get one OLS residual variable and one 

EB residual variable for each intercept or slope that we are modeling as random; here we have 

three random effects and three residuals variables.  

 

We also get the fitted or predicted values (FV) of the level-1 coefficients based on estimated 

level-2 models, and the EC coefficients, which are the sum of the fitted values plus the EB 

residuals. The posterior variances and covariances of the estimates of the intercept and the SES 

slopes are given next (PV00 to PVC10). Finally, the level-2 predictors used in the analysis plus 

those additional level-2 predictors that we requested for inclusion in the file are included.  

 

We will most heavily utilize EB residuals.  First, we can examine the normality of each set of 

residuals separately.  

.  We can examine normality for each of these: 
 

. histogram  EBINTRCPT1, normal 

(bin=12, start=-4.0914528, width=.6652911) 

 

. histogram   EBFEMALE, normal 

(bin=12, start=-1.3546074, width=.2191729) 

 

. histogram   EBSES, normal 

(bin=12, start=-.44807637, width=.07564943) 
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Second, we can assess multivariate normality by examining Mahalanobis distance measure  

(MDIST variable).  Note that the units in the residual file are sorted in ascending order by MDIST.  

Analogous to univariate normal probability plotting, we can construct a Q-Q plot of MDIST vs. 

CHIPCT.  CHIPCT contains the expected values; if the Q-Q plot resembles a 45 degree line, we 

have evidence that the random effects are distributed multivariate normal. In addition, the plot 

will help us detect outlying units (units with large MDIST values well above the 45 degree line).  

 
. scatter   MDIST CHIPCT  CHIPCT, s(. i) c(. l) 
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Here, we seem to have some model fit problem – all distance values are below the expected 

values, with one being above and much higher than others.  We know that there is at least one a 

problem with the model – SES slope variance is not statistically significant, but we included it.  

If we fix that problem, the graph actually looks better: 
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If we want to examine which school has the highest MDIST: 
. scatter   MDIST CHIPCT  CHIPCT, mlabel(L2ID) c(. l) 
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5. Linearity 

Before you get your data into HLM, it’s also a good idea to examine the relationship of each 

independent variable to the dependent to assess its linearity. A good tool for such an examination 

is a lowess plot (called LOESS in SPSS) – that is, a scatterplot with locally weighted regression 

line (based on means or medians) going through it:  

 
. lowess mathach ses1 
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We can change bandwidth to make the curve less smooth (decrease the number) or smoother 

(increase the number): 
. lowess mathach ses1, bwidth(.1) 
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We can also add a regression line to see the difference better: 
. scatter mathach ses1, mcolor(yellow) || lowess mathach ses1, lcolor(red) || 

lfit mathach ses1, lcolor(blue) 
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You can do an approximate test for multivariate linearity (based on OLS); in Stata, we could  

install a user-written mrunning program: 
. search mrunning 

Keyword search 

        Keywords:  mrunning 

          Search:  (1) Official help files, FAQs, Examples, SJs, and STBs 

Search of official help files, FAQs, Examples, SJs, and STBs 

SJ-5-3  gr0017  . . . . . . . . . . . . . A multivariable scatterplot smoother 

        (help mrunning, running if installed) . . . . P. Royston and N. J. Cox 

        Q3/05   SJ 5(3):405--412 

        presents an extension to running for use in a 

        multivariable context 

 

Click on gr0017 to install the program. Now we can use it: 
. mrunning mathach ses female sector meanses size 
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If the relationship looks nonlinear on lowess plot, consider using transformations to fix it before 

importing data into HLM. (Note that if the relationship is too complex, sometimes we may 

choose to break up the corresponding independent variable into a series of dummies instead.)  

  

Monotone nonlinear relationship: Power transformations can be used to linearize relationships if 

strong monotone nonlinearities are found.  The following chart gives suggestions for 

transformations when the curve looks a certain way: 

 

 
 

Nonmonotone relationship: For non-monotone relationships (e.g. parabola or cubic), use 

polynomial functions of the variable, e.g. ses and ses squared, etc.  Note that when including 

variables that are generated using other variables already in the model (as in this case, or when 

we want to enter a product of two variables to model an interaction term), we should mean-

center the variable outside of HLM (only if it is continuous; don't mean-center dichotomous 

variables!), and then square and/or cube the mean-centered variable. We will then include the 

mean-centered variable itself and its transformations into our HLM file and our models.  For 

example, if we are dealing with a second level variable, we would get its mean across 160 level 2 

cases by restricting the calculation to one case per level 2 unit: 
. sum size if case==1 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

        size |       160    1097.825    629.5064        100       2713 
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. gen sizem=size-r(mean) 

. gen sizem2=sizem^2 

 

Oftentimes, the same transformation that helps with normality also will improve linearity, but 

that it is not always the case. Overall, linearity is more important to enforce than normality for a 

given variable, so if you end up with incompatible transformations, opt for the one improving 

linearity.  

 

Once we estimated our HLM model and obtained residuals, we can inspect them to further assess 

linearity. First, we can assess the overall pattern by plotting level 1 residuals against predicted 

values; there should be no discernable pattern: 
. scatter L1RESID FITVAL 
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This does not look too good; indicates potential heteroscedasticity or nonlinearity problems.  

 

To test the linearity assumption for continuous predictors, it is useful to plot residuals against 

each of the continuous dependent variable. To improve our ability to detect a curvilinear 

relationship, we will include a smoother in our plot using lowess command in Stata (in SPSS, 

you have to edit your plot to get a LOESS smoother).  

 

In level 1 file: 
. lowess  L1RESID  SES 
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Looks more or less fine, but we do see those outliers we discussed above. 
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In level 2 file: 
. lowess  EBINTRCPT1 MEANSES 

. lowess   EBFEMALE MEANSES 

. lowess    EBSES MEANSES 
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Based on these graphs, we could consider modeling nonlinear relationships with MEANSES 

(e.g. cubic).  
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We can also use such plots to search for potential other relationships and examine their shape, 

e.g. with PRACAD: 
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Based on graphs for MEANSES, looks like we need a quadratic and cubic term; let’s try that. 

First, create them in Stata: 
. use "C:\Users\sarkisin\hsb.dta", clear 
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. sum meanses 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

     meanses |      7185    .0061385    .4135539     -1.188       .831 

 

. gen meansesm=meanses-r(mean) 

 

. gen meanses2=meansesm^2 

 

. gen meanses3=meansesm^3 

 

. save "C:\Users\sarkisin\hsb_n.dta" 

Next, we import these data with new level 2 variables into MDM and run the following model: 

Summary of the model specified 

Level-1 Model 

    MATHACHij = β0j + β1j*(FEMALEij) + β2j*(SESij) + rij  

 

Level-2 Model 

    β0j = γ00 + γ01*(SECTORj) + γ02*(MEANSESMj) + γ03*(MEANSES2j) + γ04*(MEANSES3j) + u0j 

    β1j = γ10 + γ11*(SECTORj) + γ12*(MEANSESMj) + γ13*(MEANSES2j) + γ14*(MEANSES3j) + u1j 

    β2j = γ20 + γ21*(SECTORj) + γ22*(MEANSESMj) + γ23*(MEANSES2j) + γ24*(MEANSES3j) + u2j 

 

Mixed Model 

    MATHACHij = γ00 + γ01*SECTORj + γ02*MEANSESMj + γ03*MEANSES2j  

    + γ04*MEANSES3j  

    + γ10*FEMALEij + γ11*SECTORj*FEMALEij + γ12*MEANSESMj*FEMALEij + γ13*MEANSES2

j*FEMALEij  

    + γ14*MEANSES3j*FEMALEij  

    + γ20*SESij + γ21*SECTORj*SESij + γ22*MEANSESMj*SESij + γ23*MEANSES2j*SESij  

    + γ24*MEANSES3j*SESij  

     + u0j + u1j*FEMALEij  + u2j*SESij + rij 

 

Final Results - Iteration 196 

Iterations stopped due to small change in likelihood function 
 

σ
2
 = 36.33164 

 

τ 

INTRCPT1,β0      2.89652    -1.10566    0.15643 

FEMALE,β1      -1.10566    1.07071    -0.10789 

SES,β2      0.15643    -0.10789    0.03481 

 

τ (as correlations) 
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INTRCPT1,β0      1.000   -0.628    0.493 

FEMALE,β1     -0.628    1.000   -0.559 

SES,β2      0.493   -0.559    1.000 

 

Random level-1 coefficient   Reliability estimate 

INTRCPT1,β0 0.562 

FEMALE,β1 0.226 

SES,β2 0.018 

 

Note: The reliability estimates reported above are based on only 123 of 160 

units that had sufficient data for computation. Fixed effects and variance 

components are based on all the data. 

The value of the log-likelihood function at iteration 196 = -2.321064E+004 

 

Final estimation of fixed effects: 

Fixed Effect  Coefficient 
 Standard 

error 
 t-ratio 

 Approx. 

d.f. 
 p-value 

For INTRCPT1, β0 

    INTRCPT2, γ00 12.907247 0.279465 46.186 155 <0.001 

     SECTOR, γ01 1.283642 0.404468 3.174 155 0.002 

    MEANSESM, γ02 1.797330 0.817768 2.198 155 0.029 

    MEANSES2, γ03 -0.951531 1.120816 -0.849 155 0.397 

    MEANSES3, γ04 3.836587 1.690063 2.270 155 0.025 

For FEMALE slope, β1 

    INTRCPT2, γ10 -1.233096 0.280534 -4.396 155 <0.001 

     SECTOR, γ11 -0.001974 0.428020 -0.005 155 0.996 

    MEANSESM, γ12 0.799645 0.824353 0.970 155 0.334 

    MEANSES2, γ13 -0.111261 1.131924 -0.098 155 0.922 

    MEANSES3, γ14 -1.773548 1.617949 -1.096 155 0.275 

For SES slope, β2 

    INTRCPT2, γ20 3.054068 0.168069 18.172 155 <0.001 

     SECTOR, γ21 -1.448019 0.228292 -6.343 155 <0.001 

    MEANSESM, γ22 0.436659 0.458282 0.953 155 0.342 

    MEANSES2, γ23 -1.423832 0.651288 -2.186 155 0.030 

    MEANSES3, γ24 0.830308 0.944632 0.879 155 0.381 

Final estimation of fixed effects 

(with robust standard errors) 

Fixed Effect  Coefficient 
 Standard 

error 
 t-ratio 

 Approx. 

d.f. 
 p-value 

For INTRCPT1, β0 

    INTRCPT2, γ00 12.907247 0.247259 52.201 155 <0.001 

     SECTOR, γ01 1.283642 0.405022 3.169 155 0.002 

    MEANSESM, γ02 1.797330 0.764002 2.353 155 0.020 
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    MEANSES2, γ03 -0.951531 1.018663 -0.934 155 0.352 

    MEANSES3, γ04 3.836587 1.262893 3.038 155 0.003 

For FEMALE slope, β1 

    INTRCPT2, γ10 -1.233096 0.263774 -4.675 155 <0.001 

     SECTOR, γ11 -0.001974 0.415286 -0.005 155 0.996 

    MEANSESM, γ12 0.799645 0.745535 1.073 155 0.285 

    MEANSES2, γ13 -0.111261 0.877522 -0.127 155 0.899 

    MEANSES3, γ14 -1.773548 1.238739 -1.432 155 0.154 

For SES slope, β2 

    INTRCPT2, γ20 3.054068 0.142724 21.398 155 <0.001 

     SECTOR, γ21 -1.448019 0.222484 -6.508 155 <0.001 

    MEANSESM, γ22 0.436659 0.455257 0.959 155 0.339 

    MEANSES2, γ23 -1.423832 0.570011 -2.498 155 0.014 

    MEANSES3, γ24 0.830308 0.782073 1.062 155 0.290 

Final estimation of variance components 

Random Effect 
Standard 

 Deviation 

Variance 

 Component 
  d.f. χ

2
 p-value 

INTRCPT1, u0 1.70192 2.89652 118 294.11109 <0.001 

FEMALE slope, u1 1.03475 1.07071 118 147.36019 0.035 

SES slope, u2 0.18658 0.03481 118 115.27717 >0.500 

level-1, r 6.02757 36.33164       

 

Note: The chi-square statistics reported above are based on only 123 of 160 

units that had sufficient data for computation. Fixed effects and variance 

components are based on all the data. 

 

Statistics for current covariance components model 

Deviance = 46421.274684 

Number of estimated parameters = 7 

 

It looks like there is a bunch of non-significant coefficients that we could omit; let’s do a 

hypothesis test: 

Results of General Linear Hypothesis Testing - Test 1 

   Coefficients   Contrast  

For INTRCPT1, β0 

    INTRCPT2, γ00 12.907247 0.0000 0.0000 0.0000 0.0000 0.0000 

     SECTOR, γ01 1.283642 0.0000 0.0000 0.0000 0.0000 0.0000 

    MEANSESM, γ02 1.797330 0.0000 0.0000 0.0000 0.0000 0.0000 

    MEANSES2, γ03 -0.951531 0.0000 0.0000 0.0000 0.0000 0.0000 

    MEANSES3, γ04 3.836587 0.0000 0.0000 0.0000 0.0000 0.0000 

For FEMALE slope, β1 

    INTRCPT2, γ10 -1.233096 0.0000 0.0000 0.0000 0.0000 0.0000 

     SECTOR, γ11 -0.001974 1.0000 0.0000 0.0000 0.0000 0.0000 
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    MEANSESM, γ12 0.799645 0.0000 1.0000 0.0000 0.0000 0.0000 

    MEANSES2, γ13 -0.111261 0.0000 0.0000 1.0000 0.0000 0.0000 

    MEANSES3, γ14 -1.773548 0.0000 0.0000 0.0000 1.0000 0.0000 

For SES slope, β2 

    INTRCPT2, γ20 3.054068 0.0000 0.0000 0.0000 0.0000 0.0000 

     SECTOR, γ21 -1.448019 0.0000 0.0000 0.0000 0.0000 0.0000 

    MEANSESM, γ22 0.436659 0.0000 0.0000 0.0000 0.0000 0.0000 

    MEANSES2, γ23 -1.423832 0.0000 0.0000 0.0000 0.0000 0.0000 

    MEANSES3, γ24 0.830308 0.0000 0.0000 0.0000 0.0000 1.0000 

Estimate -0.0020 0.7996 -0.1113 -1.7735 0.8303 

Standard error of estimate 0.4153 0.7455 0.8775 1.2387 0.7821 

 

    χ
2
 statistic = 5.187475 

    Degrees of freedom = 5 

    p-value = 0.393820 

 

 

We can safely omit these, as well as fix SES variance. Here’s the resulting final model: 

Summary of the model specified 

Level-1 Model 

    MATHACHij = β0j + β1j*(FEMALEij) + β2j*(SESij) + rij  

 

Level-2 Model 

    β0j = γ00 + γ01*(SECTORj) + γ02*(MEANSESMj) + γ03*(MEANSES2j) + γ04*(MEANSES3j) + u0j 

    β1j = γ10 + u1j 

    β2j = γ20 + γ21*(SECTORj) + γ22*(MEANSESMj) + γ23*(MEANSES2j)  

 

Mixed Model 

    MATHACHij = γ00 + γ01*SECTORj + γ02*MEANSESMj + γ03*MEANSES2j  

    + γ04*MEANSES3j  

    + γ10*FEMALEij  

    + γ20*SESij + γ21*SECTORj*SESij + γ22*MEANSESMj*SESij + γ23*MEANSES2j*SESij  

     + u0j + u1j*FEMALEij + rij 

 

Final Results - Iteration 41 

Iterations stopped due to small change in likelihood function 
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σ
2
 = 36.35048 

 

τ 

INTRCPT1,β0      2.86530    -1.06216 

FEMALE,β1      -1.06216    0.98579 

 

τ (as correlations) 

INTRCPT1,β0      1.000   -0.632 

FEMALE,β1     -0.632    1.000 

 

Random level-1 coefficient   Reliability estimate 

INTRCPT1,β0 0.597 

FEMALE,β1 0.216 

 

Note: The reliability estimates reported above are based on only 123 of 160 

units that had sufficient data for computation. Fixed effects and variance 

components are based on all the data. 

The value of the log-likelihood function at iteration 41 = -2.321437E+004 

 

Final estimation of fixed effects: 

Fixed Effect  Coefficient 
 Standard 

error 
 t-ratio 

 Approx. 

d.f. 
 p-value 

For INTRCPT1, β0 

    INTRCPT2, γ00 12.860968 0.241018 53.361 155 <0.001 

     SECTOR, γ01 1.267077 0.290825 4.357 155 <0.001 

    MEANSESM, γ02 2.454522 0.593980 4.132 155 <0.001 

    MEANSES2, γ03 -0.807528 0.813216 -0.993 155 0.322 

    MEANSES3, γ04 2.438583 1.275980 1.911 155 0.058 

For FEMALE slope, β1 

    INTRCPT2, γ10 -1.210167 0.181840 -6.655 159 <0.001 

For SES slope, β2 

    INTRCPT2, γ20 3.083014 0.163651 18.839 6861 <0.001 

     SECTOR, γ21 -1.442005 0.225767 -6.387 6861 <0.001 

    MEANSESM, γ22 0.734397 0.304820 2.409 6861 0.016 

    MEANSES2, γ23 -1.715493 0.572301 -2.998 6861 0.003 

Final estimation of fixed effects 

(with robust standard errors) 

Fixed Effect  Coefficient 
 Standard 

error 
 t-ratio 

 Approx. 

d.f. 
 p-value 

For INTRCPT1, β0 

    INTRCPT2, γ00 12.860968 0.220636 58.290 155 <0.001 

     SECTOR, γ01 1.267077 0.305094 4.153 155 <0.001 

    MEANSESM, γ02 2.454522 0.549808 4.464 155 <0.001 
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    MEANSES2, γ03 -0.807528 0.761298 -1.061 155 0.290 

    MEANSES3, γ04 2.438583 0.957991 2.546 155 0.012 

For FEMALE slope, β1 

    INTRCPT2, γ10 -1.210167 0.180657 -6.699 159 <0.001 

For SES slope, β2 

    INTRCPT2, γ20 3.083014 0.146072 21.106 6861 <0.001 

     SECTOR, γ21 -1.442005 0.222935 -6.468 6861 <0.001 

    MEANSESM, γ22 0.734397 0.320445 2.292 6861 0.022 

    MEANSES2, γ23 -1.715493 0.489462 -3.505 6861 <0.001 

Final estimation of variance components 

Random Effect 
Standard 

 Deviation 

Variance 

 Component 
  d.f. χ

2
 p-value 

INTRCPT1, u0 1.69272 2.86530 118 292.16127 <0.001 

FEMALE slope, u1 0.99287 0.98579 122 152.94966 0.030 

level-1, r 6.02914 36.35048       

 

Note: The chi-square statistics reported above are based on only 123 of 160 

units that had sufficient data for computation. Fixed effects and variance 

components are based on all the data. 

 

Statistics for current covariance components model 

Deviance = 46428.732167 

Number of estimated parameters = 4 

 
Generating graphs based on that in Stata: 
 

. gen pred1=12.860968+1.267077*0 + 2.454522*meansesm -0.807528*meanses2 + 

2.438583*meanses3 -1.210167*0 + 3.083014*ses -1.442005*0*ses + 

0.734397*meansesm*ses -1.715493*meanses2*ses 

 

. sum ses, det 

 

                             ses 

------------------------------------------------------------- 

      Percentiles      Smallest 

 1%       -1.848         -3.758 

 5%       -1.318         -2.838 

10%       -1.038         -2.508       Obs                7185 

25%        -.538         -2.508       Sum of Wgt.        7185 

 

50%         .002                      Mean           .0001434 

                        Largest       Std. Dev.      .7793552 

75%         .602          1.732 

90%        1.022          1.762       Variance       .6073945 

95%        1.212          1.832       Skewness      -.2281447 

99%        1.512          2.692       Kurtosis       2.620279 
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. graph twoway (line pred1 meanses if ses<.01 & ses>-.01, sort lcolor(red))  

(line pred1 meanses if ses<.603 & ses>.601, sort lcolor(green))  (line pred1 

meanses if ses<-.537 & ses>-.539, sort lcolor(blue)), legend(label(1 "Median 

SES") label(2 "75th percentile SES") label(3 "25th percentile SES")) 

ytitle(Predicted math achievement) xtitle(Mean SES of School) 
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. sum meanses, det 

 

                           meanses 

------------------------------------------------------------- 

      Percentiles      Smallest 

 1%       -1.043         -1.188 

 5%        -.696         -1.188 

10%        -.579         -1.188       Obs                7185 

25%        -.317         -1.188       Sum of Wgt.        7185 

 

50%         .038                      Mean           .0061385 

                        Largest       Std. Dev.      .4135539 

75%         .333           .831 

90%         .523           .831       Variance       .1710268 

95%         .661           .831       Skewness      -.2681775 

99%         .759           .831       Kurtosis       2.520962 

 

. graph twoway (line pred1 ses if meanses<.04 & meanses>.03, sort 

lcolor(red))  (line pred1 ses if meanses<.34 & meanses>.32, sort 

lcolor(green))  (line pred1 ses if meanses<-.316 & meanses>-.318, sort 

lcolor(blue)), legend(label(1 "Median School SES") label(2 "75th percentile 

School SES") label(3 "25th percentile School SES")) ytitle(Predicted math 

achievement) xtitle(Individual SES) 
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Graphs in HLM 

 

Using graphs to examine the data 

 

HLM has some limited graphing capabilities allowing you to examine the data before starting to 

build models.  You can examine your data by creating boxplots for a variable, e.g., your 

dependent variable, by group – to see group differences and group-level outliers.  You can also 

mark these groups according to one level-2 variable: 
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You can also create a scatterplot for the whole sample by values of a level-2 variable: 
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Or you can create scatterplots separating groups and colorcoding them by a level-2 variable: 
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Graphing Equations 

Graphs can also be used to better illustrate and understand the models you estimate—but if you 

have complexity like in the model we just did (with squared and cubed terms), the graphs can 

produce strange results; Stata is more reliable. But for simpler models, rhese can greatly assist in 

interpreting the findings. E.g. for a model with SES and SECTOR: 
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Summary of the model specified 

Level-1 Model 

    MATHACHij = β0j + β1j*(SESij) + rij  

 

Level-2 Model 

    β0j = γ00 + γ01*(SECTORj) + u0j 

    β1j = γ10 + γ11*(SECTORj) + u1j 

 

Mixed Model 

    MATHACHij = γ00 + γ01*SECTORj  

    + γ10*SESij + γ11*SECTORj*SESij  

     + u0j + u1j*SESij + rij 

 

Final Results - Iteration 198 

Iterations stopped due to small change in likelihood function 
 

σ
2
 = 36.76311 

 

τ 

INTRCPT1,β0      3.83295    0.54112 

SES,β1      0.54112    0.12988 

 

τ (as correlations) 

INTRCPT1,β0      1.000    0.767 

SES,β1      0.767    1.000 

 

Random level-1 coefficient   Reliability estimate 

INTRCPT1,β0 0.759 

SES,β1 0.064 

The value of the log-likelihood function at iteration 198 = -2.328373E+004 

 

Final estimation of fixed effects: 

Fixed Effect  Coefficient 
 Standard 

error 
 t-ratio 

 Approx. 

d.f. 
 p-value 

For INTRCPT1, β0 

    INTRCPT2, γ00 11.750237 0.232241 50.595 158 <0.001 

     SECTOR, γ01 2.128611 0.346651 6.141 158 <0.001 
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For SES slope, β1 

    INTRCPT2, γ10 2.958798 0.145460 20.341 158 <0.001 

     SECTOR, γ11 -1.313096 0.219062 -5.994 158 <0.001 

Final estimation of fixed effects 

(with robust standard errors) 

Fixed Effect  Coefficient 
 Standard 

error 
 t-ratio 

 Approx. 

d.f. 
 p-value 

For INTRCPT1, β0 

    INTRCPT2, γ00 11.750237 0.218675 53.734 158 <0.001 

     SECTOR, γ01 2.128611 0.355697 5.984 158 <0.001 

For SES slope, β1 

    INTRCPT2, γ10 2.958798 0.144092 20.534 158 <0.001 

     SECTOR, γ11 -1.313096 0.214271 -6.128 158 <0.001 

 

Final estimation of variance components 

Random Effect 
Standard 

 Deviation 

Variance 

 Component 
  d.f. χ

2
 p-value 

INTRCPT1, u0 1.95779 3.83295 158 756.04081 <0.001 

SES slope, u1 0.36039 0.12988 158 178.09113 0.131 

level-1, r 6.06326 36.76311       

Statistics for current covariance components model 

Deviance = 46567.464830 

Number of estimated parameters = 4 

 

Let’s do Graph Equations  Level 1 equation graphing.  Here you can examine slopes for level-

1 variables across groups: 
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Or you can graph the relationships based on the fixed effects in your last model using Graph 

Equations  Model graphs.   Here, you have a range of options.  For example, you can look at 

how level 1 slopes vary depending on values of level 2 variables (if you have a cross-level 

interaction in your model).  You need to select a level-1 variable as you X, and level-2 variable 

as Z focus: 
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Or you can examine how predicted values vary by level of both level-1and level-2 variables by 

selecting level-2 variable as your X, and level-1 as your Z-focus: 
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