Introduction to Statistics

1

Statistics

 Statistics is the science of gathering, organizing, analyzing and drawing conclusions from numerical data

Time Temp QUALITY OF LIFE 3:17 58 24%

How Do We Obtain These Numbers? Measurement

3

Units of Statistical Analysis

- Any entities that our data describe (aka units of observation, or cases)
 - Individual people
 - Schools, universities, organizations
 - Geographical areas
 - Countries
 - Entire world at different points in time

"Man, they can't do anything right. Half the countries are underdeveloped. The other half are overdeveloped."

Variables

- We characterize each unit of analysis by a number of traits and attributes = variables
- Variable is any characteristic that can have different values (at least 2)
- Examples: race, income, education

5

Quantitative vs Qualitative Variables

- Variables can be <u>quantitative</u> (measured in numbers) and <u>qualitative</u> (measured in words).
- Statistics are used to analyze quantitative data (or qualitative data that have been quantified)

Variables: Levels of Measurement

- Continuous (interval or ratio)
- Ordinal
- Nominal (or categorical)

Continuous

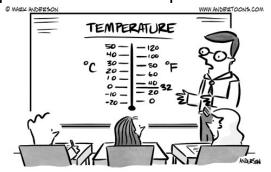
7

Nominal (or categorical)

- Values vary in quality but not the amount
- Examples: nationality, religion, occupation
- Can be represented by numbers, but still not quantitative (e.g., student ID values)
- Categories should be <u>exhaustive</u> (nothing left out) and <u>exclusive</u> (no overlap)
- Dichotomies (yes/no variables) are always nominal

Ordinal

- Numbers denote order, ascending or descending
- Distances between numbers not defined
- Examples: agreement scales, approval scales



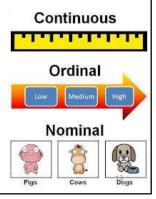
9

*And with 10 being the highest, you're sure you're only at a 6?"

Interval

- Distances between numbers are meaningful
- Difference between 1 and 2 is the same as between 10 and 11
- Example: Fahrenheit temperature scale

"I don't think Fahrenheit is trying to show off, it's just different."


11

Ratio

- Ratio: has a natural zero point (= total lack of)
- Examples: age, weight, income
- That 0 value may never occur in the data (e.g., one can't weigh 0 lbs)

Interval + Ratio

- Interval and ratio variables are analyzed and treated the same in statistics
- Jointly, they are called continuous or scale

Survey of Undergrad Students at BC

Survey ID	Age	GPA	State of origin	Satisfaction with major
1	19	3.2	NJ	Very satisfied
2	22	2.5	MA	Neither
3	20	4.0	MA	Somewhat satisfied
4	23	2.2	CA	Somewhat satisfied
5	21	3.7	TN	Very satisfied

Which ones are variables in this dataset? Levels of measurement?

- •Year in school (freshman, sophomore, junior, senior)
- Hours per week spent studying
- Major
- Number of students at the universityWhether or not each student is employed while studying
- Number of roommates

- Whether or not the university is located in the US
 Self-rated stress level (scale 1–100)
 Whether women are more likely to major in Sociology than men
- •Whether or not each student owns a car